“Allahumma tawwi umurana fi ta’atika wa ta’ati rasulika waj’alna min ibadikas salihina”

ARTIKEL ES KRIM

MILK HOMOGENIZER

MILK HOMOGENIZER

Susu homogen adalah susu yang telah mengalami homogenisasi. Proses homogenisasi bertujuan untuk menyeragamkan besarnya globula-globula lemak susu. Di dalam susu yang belum dihogenisasi, globula-globula lemak ini besarnya tidak seragam yaitu 2 – 20 mikrometer. Alat untuk menyeragamkan globula-globula lemak tersebut disebut homogenizer.

Prinsip kerja homogenizer adalah susu ditekan melalui lubang kecil, kemudian setelah keluar akan menghantam suatu bidang atau dinding yang keras, maka globula-globula lemak yang berukuran besar akan pecah menjadi beberapa globula lemak yang kecil-kecil. Tekanan yang digunakan dalam proses homogenisasi ini adalah antara 2.000 – 4000 psi.

Ada beberapa macam tipe homogenizer yaitu :

1.      Single stage homogenizer, apabila penekanan susu dikerjakan hanya satu kali selama proses dalam satu alat. Biasa digunakan untuk homogenisasi:

– Produk dengan kandungan lemak rendah

– Produk yang memerlukan homogenisasi berat (heavy)

– Produk yang memerlukan viscositas tinggi

2.      Two stage homogenizer, apabila penekanan susu dikerjakan dua kali selama proses dalam satu alat. Biasa digunakan untuk:

– Produk dengan kandungan lemak tinggi

– Produk dengan kandungan bahan kering (konsentrasi susu) tinggi

– Produk dengan viscositas rendah.

3.      Multi stage homogenizer, apabila penekanan susu dikerjakan lebih dari dua kali selama proses dalam satu alat.

Ketidak seragaman ukuran globula lemak susu tidak dikehendaki di dalam pembuatan produk-produk olahan susu tertentu, karena hasilnya tidak akan terasa halus. Tetapi kerugian susu homogen adalah mudah mengalami creaming yaitu memisahnya kepala susu (krim) dibagian atas terpisah dari serum yang terletak dibagian bawah.

Homogenisasi merupakan sebuah proses atau beberapa proses yang digunakan untuk membuat campuran menjadi seragam. Homogenisasi bisa disebut juga dengan pencampuran beberapa zat yang terkait untuk membentuk suspensi atau emulsi. Homogenisasi dilakukan jika zat atau campuran bahan memiliki kandungan yang berukuran cukup besar sehingga tidak memungkinkan kondisi campuran seragam. Contoh zat yang paling sering dihomogenisasi adalah susu murni (raw milk), di mana kandungan yang berukuran cukup besar yang dimaksud adalah molekul lemak yang dapat terpisah dengan sendirinya (tersuspensi) dari susu ketika dibiarkan terlalu lama (membentuk krim). Sebagian besar para konsumen susu merupakan susu yang dihomogenisasi.

Homogenisasi adalah istilah yang digunakan oleh para ilmuwan makanan dan insinyur untuk menggambarkan berbagai proses termasuk ultrasonik, rotary, membran, pabrik koloid, dan valve homogenisasi, dan lainnya. Ambiguitas dalam penggunaan kata homogenisasi, bahwa setiap proses yang mengurangi heterogenitas dapat disebut homogenisasi. Salah satu alat dari homogenisasi ini adalah valve homogenizer. Salah satu jenis dari valve homogenizer, ada yang biasanya disebut sebagai valve homogenizer tekanan tinggi atau nama lainnya adalah dynamic homogenizer tekanan tinggi. Proses ini diterapkan untuk liquid dengan perangkat yang terdiri dari pompa pemindahan positif dan satu atau lebih stage yang dibuat oleh valve atau nozzle. Pompa pemindahan positif yaitu pompa yang bekerja menghisap zat cair, kemudian menekan  zat cair tersebut, selanjutnya zat cair dikeluarkan melalui valve atau lubang keluar. Pada pompa ini fluida yang dihisap sama dengan fluida yang dikeluarkan.

Gambar 1. Cara Kerja suatu sistem homogenisasi menggunakan valve

(Sumber: Anonim, 2011)

Kita bisa mendefinisikan valve homogenizer tekanan tinggi ini sebagai suatu alat yang memiliki proses homogenisasi dimana pompa mampu memberikan setidaknya 100 MPa tekanan hidrostatik untuk liquid sebelum pembatas aliran difungsikan, terlepas dari laju aliran. Teknologi homogenisasi terus berkembang dan mampu juga beroperasi pada tekanan yang rendah.

Jenis kedua dari valve homogenizer adalah valve homogenizer tekanan rendah. Jenis ini memiliki proses yaitu liquid bertekanan mengalir melalui suatu valve. Didalamnya ada peningkatan besar dalam kecepatan fluida disertai penurunan tekanan suatu fluida. Kecepatan fluida memulai turbulensi sangat intens dalam fluid jet lalu keluar dari valve dan menyebabkan turbulensi. Hal ini mengganggu fase terdispersi dan menghasilkan efek homogenisasi.

Valve homogenizer tekanan tinggi pada industri, pilot, atau skala laboratorium saat ini dilengkapi dengan pompa tipe plunger dan valve nozzle yang terbuat dari keramik tahan abrasif atau batu permata keras. Stabilitas tekanan dapat dicapai antara pompa dan valve atau penggunaan dua atau lebih piston reciprocating dan algoritma kontrol yang tumpang tindih. Dalam pengaturan valve misalnya Stansted Power Fluid, seat valve-nya berbentuk jarum atau bola dengan material zirkonium atau tungsten karbida, dengan tekanan homogenisasi yang dikendalikan oleh gaya yang bekerja selama seat valve menghalangi aliran fluida.

Beberapa homogenizers misalnya Avestin dan BEE Internasional, dilengkapi dengan satu atau dua nozzle sebagai gantinya valve. Teknologi untuk homogenizer tekanan tinggi nozzle awalnya dikembangkan untuk aplikasi pemotongan pada water jet. Dalam hal ini, pompa tekanan tinggi terhubung ke attenuator untuk mengurangi fluktuasi tekanan dan homogenisasi dicapai dengan nozzle head yang terbuat dari ruby, safir atau berlian. Lubang Nozzle biasanya <0,35 mm dengan material nozzle head tertentu tergantung pada tekanan maksimum, misalnya dengan berlian menjadi material yang paling kuat dan mahal. Dalam pengaturan nozzle, tekanan homogenisasi ditentukan oleh tekanan pompa. Dalam sistem mikrofluida, aliran-aliran dibagi dalam dua atau lebih saluran yang diarahkan pada bidang yang sama namun di sudut yang tepat dan didorong ke aliran tunggal. Tekanan driven pump (hingga 300 MPa) memberikan kecepatan tinggi di pertemuan dua arus yang menghasilkan tegangan geser yang tinggi, turbulensi, dan kavitasi lebih pada arus masuk aliran tunggal.

Gambar 2.  Valve homogenizers tekanan tinggi (Sumber: Anonim, 2011)

Keterangan :

A = mikrofluida

B = valve seat material keramik berbentuk jarum

C = valve seat material keramik berbentuk bola

D = proses pemecahan molekul besar

Valve homogenizers pertama kali diperkenalkan secara komersial pada awal abad ke-20 untuk pengolahan susu cair. Tujuan utamanya adalah untuk menghindari pemisahan lemak sehingga setiap konsumen akan menerima bagian yang adil nya dari lemak susu karena tidak akan ada pengurangan krim. Saat ini, hampir semua susu dihomogenisasi karena konsumen menolak melihat lapisan atas dari krim dalam susu mereka. Kekhawatiran atas dampak potensial dari susu dihomogenisasi pada kesehatan manusia telah dicabut oleh studi terbaru.

Gambar 3. Efek homogenisasi pada lemak dan kasein di susu

(Sumber: Anonim, 2011)

Dalam setup industri, lemak (atau krim) dipisahkan dari susu dengan sentrifugasi terus menerus, dihomogenisasi pada tekanan di bawah 20 MPa dan kemudian dituangkan kembali ke dalam susu skim dengan standar 1%, 2% atau mendekati 3,25% isi lemak.

Homogenisasi biasanya berlangsung dengan pengolahan mekanik, sehingga emulsi lemak memiliki tekanan masuk yang tinggi dan dipaksa dengan kecepatan tinggi melewati celah yang sangat sempit, di mana tetesan lemak dari emulsi lemak akan rusak sebagai akibat dari turbulensi yang terjadi pada kecepatan yang tinggi dan melalui gelembung kavitasi yang meledak dalam cairan. Proses ini berlangsung selama periode yang sangat singkat dan apa yang terjadi selama periode waktu tersebut adalah kecepatan emulsi lemak mengalami kenaikan sementara tekanan menurun.

Sebuah homogenizer pada dasarnya terdiri dari pompa piston besar yang memberikan tekanan tinggi, serta perangkat counter-pressure di mana homogenisasi tepat berlangsung. Perangkat counter-pressure, atau homogenizer valve, terdiri dari bagian yang bertekanan, resilient valve cone, posisi dudukan valve yang menggunakan cincin atau gasket dan casing pendukung valve yang dikelilingi oleh valve cone dan valve seat. Valve cone dan valve seat biasanya rotasi-simetris dan cenderung terjadi homegenisasi di antara dua bagian throttle radial tersebut (suatu celah). Tinggi, lebar dan panjang celah menentukan volume homogenisasi. Ukuran celah ini harus cukup kecil untuk mendapatkan proses homogenisasi yang efisien. Lebar celah berkurang pada tekanan yang lebih tinggi di liquid yang akan dihomogenkan, pada saat yang sama aliran yang lebih besar memerlukan celah yang lebih besar pula.

Susu yang berlabel UHT (Ultra High Temperatute) dibuat dari tekanan yang rendah pada saat yang sama dengan tujuan untuk meningkatkan kuantitas aliran. Ini berarti bahwa valve homogenizer harus dibuat lebih besar sehingga celahnya bisa mengecil. Namun untuk valve homogenizer yang lebih besar tentu memerlukan biaya yang lebih besar pula. Metode lainnya ialah dengan menghubungkan secara paralel celah-celah homogenizer dengan begitu ukuran celahnya akan berkurang.

Homogenizer yang digunakan di dalam industri tersebut terdapat didalam banyak model dan kapasitas. Perbedaan model tersebut terdapat dalam banyak model dan kapasitas. Perbedaan model tersebut umumnya terletak pada konstruksi lubang dan alat pengatur pengeluaranya.

Kebanyakan tekanan tinggi homogenizer digunakan untuk homogenisasi diadaptasi dari peralatan komersial yang dirancang untuk menghasilkan emulsi dan homogenat dalam industri makanan dan farmasi. Mereka menggabungkan tekanan tinggi dengan outlet valve. Dengan tekanan maksimum 10.000 psi pecah sekitar 40% dari sel pada single pass, 60% pada kedua dan 85% setelah empat kali lewat. Kapasitas homogenizer terus bervariasi dari 55 sampai 4.500 liter/jam pada 10-17% konsentrasi sel.

Gambar 4. Valve Homogenizer

(Sumber: Gerard, 2008)

Valve homogenizer paling efektif dalam memperkecil ukuran fase dispers kemudian meningkatkan luas permukaan fase minyak dan akhirnya meningkatkan viskositas emulsi sehingga mengurangi kemungkinan terjadinya ”creaming”. Valve homogenizer bekerja dengan cara menekan cairan dimana cairan tersebut dipaksa melalui suatu celah yang sangat sempit lalu dibenturkan ke suatu dinding atau ditumbukkan pada metal pins yang ada di dalam celah tersebut.

Valve homogenizer umumnya terdiri dari pompa yang menaikkan tekanan dispersi pada kisaran 500-5000 psi, dan suatu lubang yang dilalui cairan dan mengenai valve penghomogenan yang terdapat pada tempat valve dengan suatu spiral yang kuat. Ketika tekanan meningkat, spiral ditekan dan sebagian dispersi tersebut bebas di antara valve dan tempat (dudukan) valve. Pada titik ini, energi yang tersimpan dalam cairan sebagian tekanan dilepaskan secara spontan sehingga produk menghasilkan turbulensi yang kuat dan shear hidrolik. Cara kerja homogenizer ini cukup efektif sehingga bisa didapatkan diameter partikel rata-rata kurang dari 1 mikron tetapi homogenizer dapat menaikkan temperatur emulsi sehingga dibutuhkan pendinginan. Unitvalve homogenizersini mempunyai bagian pemompaan untukmenyuplai material yang akan dilarutkan melalui sebuah orifice terkecil. Tekanan akan tinggi  diturunkan mendekati tekanan fluida melalui sebuah orifice sehingga menghasilkan shear force tinggi dimana emulsi dan suspensi koloid akan dihasilkan secara continue.

DAFTAR PUSTAKA

Anonim. 2011. High Pressure Homogenization. (online). http://web.utk.edu/~fede/high%20pressure%20homogenization.html. (13 September 2015).

Dickenson, T.C. 1999. Valves, Piping, and Pipelines Handbook. Inggris : Elsevier Advanced Technology.

Gerard. 2008. Food Emulsifier and Their Applications. New York : Springer.


PRINSIP DASAR PASTEURISASI

PRINSIP DASAR PASTEURISASI

Created By : Widiantoko, R. K.

Susu pasteurisasi adalah susu yang diolah melalui proses pemanasan dengan tujuan mencegah kerusakan susu akibat aktivitas mikroorganisme perusak (patogen), pembusuk serta inaktivasi enzim dengan tetap menjaga kualitas nutrisi susu. Pasteurisasi adalah proses sterilisasi bahan baku yang tidak tahan panas seperti susu untuk meminimumkan perubahan kimiawi, fisik, dan organoleptik produk . Pasteurisasi tidak mematikan semua mikroorganisme tetapi hanya mematikan kuman yang patogen dan sel vegetatif tapi tidak mampu mematikan/inaktivasi spora. Pasteurisasi juga tidak mematikan semua mikroorganisme (sterilisasi), karena mikrobia termodurik tetap dapat bertahan dan bakteri pembentuk spora tetap aktif

Pasteurisasi menghasilkan produk dengan daya tahan yang pendek atau memerlukan pengawetan tambahan lain (teknologi Hurdle atau rintangan). Karena proses pasteurisasi tidak mematikan bakteri pembentuk spora maka produk harus diberi perlakuan lain yang dapat meminimalkan pertumbuhan mikroba seperti penambahan pengawet, pendinginan, MAP, penurunan pH dan pengaturan Aw.

Proses pasteurisasi dilakukan dengan memanaskan susu pada suhu 62 oC selama 30 menit atau suhu 72 oC selama 15 detik. Pasteurisasi tidak dapat mematikan bakteri non patogen, terutama bakteri pembusuk. Susu pasteurisasi bukan merupakan susu awet. Penyimpanan susu pasteurisasi dilanjutkan dengan metode pendinginan. Metode pendinginan pada suhu maksimal 10 oC memperpanjang daya simpan susu pasteurisasi. Mikroba pembusuk tidak dapat tumbuh dan berkembang pada suhu 3-10 oC (Setya, 2012).

Pasteurisasi adalah salah satu proses terpenting dalam penanganan susu. Proses pasteurisasi perlu dilakukan dengan benar sehingga membuat susu memiliki umur simpan yang lebih lama. Suhu dan waktu pasteurisasi adalah faktor penting yang harus diukur dalam menentukan kualitas dan kondisi umur simpan susu segar. Pasteurisasi bisa dilakukan dengan dua metode yaitu metode batch dan metode continue. Metode batch digunakan untuk pasteurisasi skala kecil. Tipe pasteurisasi yang digunakan pada metode batch adalah tipe pasteurisasi LTLT (Low Temperature Long Time). Metode continue digunakan untuk pasteurisasi skala menengah sampai besar. Tipe pasteurisasi yang digunakan adalah tipe HTST (High Temperature Short Time), HHST (Higher Heat Short Time), dan UHT (Ultra High Temperature). Untuk waktu dan temperature proses yang digunakan pada tiap tipe pasteurisasi dapat dilihat pada tabel 2.1. Pada pengaplikasiannya di industri, metode pasteurisasi yang umum dipakai adalah metode kontinyu. Metode ini dipilih karena dapat menghasilkan volume susu pasteurisasi yang lebih banyak dengan waktu proses yang lebih singkat, pemakaian listrik yang lebih rendah, dan kerusakan protein yang lebih sedikit karena waktu pemanasan yang lebih singkat. Metode Pasteurisasi yang umum digunakan adalah sebagai berikut (Setya, 2012):

1. Pasteurisasi dengan suhu tinggi dan waktu singkat (High Temperature Short Time/HTST), yaitu proses pemanasan susu selama 15–16 detik pada suhu 71,7–75 oC dengan alat Plate Heat Exchanger.

2. Pasteurisasi dengan suhu rendah dan waktu lama (Low Temperature Long Time/LTLT) yaitu proses pemanasan susu pada suhu 61 oC selama 30 menit.

3. Pasteurisasi dengan suhu sangat tinggi (Ultra High Temperature/UHT) yaitu memanaskan susu pada suhu 131 oC selama 0,5 detik. Pemanasan dilakukan dengan tekanan tinggi untuk menghasilkan perputaran dan mencegah terjadinya pembakaran susu pada alat pemanas.

Tjahjadi dan Marta (2011) menyatakan bahwa tujuan pengolahan susu pasteuriasi adalah sebagai berikut:

1. Membunuh semua bakteri patogen (penyebab penyakit) yang umumnya dijumpai pada bahan pangan, yaitu bakteri – bakteri patogen yang berbahaya ditinjau dari kesehatan masyarakat

This image has an empty alt attribute; its file name is image-1.png

2. Memperpanjang daya tahan simpan bahan pangan dengan jalan mematikan bakteri pembusuk dan menonaktifkan enzim pada bahan pangan yang asam (pH <4,5).

Proses pasteurisasi dapat menghancurkan 90–99% bakteri yang ada di dalam susu. Pasteurisasi dapat merusak vitamin C dan kemungkinan menjadikan laktosa kasein dan unsur lemak pada susu menjadi kecil. Efek yang ditimbulkan dari proses pasteurisasi adalah dapat mempertahankan nilai nutrisi dan karakteristik sensori bahan pangan hasil pasteurisasi (Setya, 2012).

Pasteurisasi hanya dapat mempertahankan umur simpan bahan pangan untuk beberapa hari saja, dapat menyebabkan terjadinya perubahan warna, aroma dan flavor yang mengakibatkan degradasi vitamin bahan. Pasteurisasi susu dengan suhu tinggi dapat menambah daya simpan susu segar selama 1 sampai 2 minggu (Setya, 2012).

Alat Penukar Panas Pasteurisasi

Susu Alat Penukar Panas (Heat Exchanger) menjadi alat yang paling esensial dalam proses pasteurisasi karena kebutuhan panas yang digunakan untuk pasteurisasi dihasilkan oleh alat penukar panas. Jenis alat penukar panas yang biasa digunakan dalam proses pasteurisasi adalah jenis PHE dan jenis THE.

Pemakaian alat penukar panas pada proses pasteurisasi, baik Plate Heat Exchanger (PHE), maupun Tubular Heat Exchanger (THE) memiliki kelebihan dan kekurangan masing-masing. Kelebihan dan kekurangan dari penggunaan Plate Heat Exchanger dan Tubular Heat Exchanger. Alat penukar panas jenis Plate Heat Exchanger (PHE) merupakan alat penukar panas yang paling efektif dan efisien untuk proses pasteurisasi karena memiliki luas permukaan panas yang lebih tinggi dibandingkan Tubular Heat Exchanger (THE). Hal itu juga mengakibatkan efisiensi panas yang dihasilkan oleh alat penukar panas PHE lebih dari 85%. Namun apabila dilihat dari segi investasi yang diperlukan dan skala penggunaan alat tersebut, yaitu laboratorium maka alat jenis THE lebih memiliki keunggulan dibandingkan PHE .

a). Plate Heat Exchanger (PHE)

Terdapat 3 komponen yang menyusun PHE, yaitu :

a). Lembar baja tahan karat beralur (plate)

Alat penukar panas ini terdiri dari lembar (plate) baja tahan karat (stainless steel) yang telah dicetak dengan mesin press berdaya tinggi yang membentuk alur-alur dengan motif tertentu yang dimaksudkan untuk memperbesar luas permukaan lembar baja dan terjadinya turbulensi aliran cairan. Lembar-lembar baja ini disusun dengan jumlah tertentu sesuai kebutuhan dalam suatu kerangka (frame)

b). Rangka penyusun (frame)

Suatu rangka (frame) yang menjepit seluruh susunan lembar baja. Agar setiap pasangan lembar terdapat celah yang dapat dialiri cairan maka disekeliling lembar terdapat parit guna meletakkan pita karet (gasket)

c). Pita karet (gasket)

Pita karet (gasket) terbuat dari bahan yang tahan panas/dingin, tahan karat dan non toksis (food grade). Susunan PHE tersebut dapat terdiri dari beberapa bagian (section), misalnya heating, cooling, regeneration, dll.

Pada alat plate Heat Exchanger terdiri dari 4 bagian yaitu:

  • Cooling section
  • Holding Section
  • Regenerative section (Regenerasi)

Panas yang digunakan kembali dikenal dengan “panas regenerasi”pada produk dingin yang masuk dan secara tidak langsung dipanaskan oleh panas produk yang akan keluar. Dalam hal ini produk yang masuk memerlukan sedikit panas untuk meningkatkan temperaturnya dan produk yang akan keluar memerlukan pendingin untuk menurunkan temperaturnya. Regenerasi penting dalam pasteurissasi karena energi yang digerakkan sekaligus digunakan untuk pendiginan dan pemanasan.

Regenerative effect didefinisikan sebagai persentase dari jumlah panas yang diregenerasikan.





  • Bagian Pemanasan / Heating Section

Pemanasan yang berlangsung di dalam alat PHE ini bisa diperoleh dari berbagai sumber panas antara lain:

  1. Steam heating : jarang dilakukan karena perbedaan temperatur antara uap dengan susu cukup besar sehingga menyebabkan adanya deposit susu pada plat. Ini berarti operasional PHE ini lebih singkat sebelum dibersihkan dan jarang kurang efisien dalam pemindahan panas melalui plat-plat, tetapi metode ini paling ekonomis dalam penggunaan uap panas.
  2. Water heating: pemanasan menggunakan air yang dipanaskan lebih baik, karena perbedaan temperatur antara susu dengan air lebih sedikit sehingga cukup ideal. Setelah melalui regeneration section temperatur susu yang masuk misalnya 54 C. Susu kemudian dipanaskan 72 C yang berarti panas diperlukan dari 54 C sampai 72 C sebanyak 18 C. Jumlah air yang disirkulasikan biasanya 3 x lipat dari susu, berarti air panas yang akan didinginkan sebanyak 6 C (18 C / 3x). Temperatur daari air panas yang masuk 3 C lebih panas dibanding suhu pasteurisasi. Hal ini berarti : Air panas yang didinginkan dari 75 C sampai 69 C = 6 C. Susu yang dipanaskan dari 54 C sampai 72 C = 18 C. Kelemahan dari water heating adalah pemakaian uap panas dan sumber listrik lebih banyak dibandingkan yang digunakan pada heating section.
  3. Vacuum steam heating system : Cara ini menjaga temperatur uap sedikit diatas temperatur produk yang didinginkan. Metode ini lebih ekonomis karena perbedaan temperatur dengan steam heating cukup rendah.

Pada prinsipnya semua plat di dalam PHE sama, putaran dari setiap 180 derajat diantara plat-plat disebut plat kiri dan plat kanan. Ketebalan plat antara 0.8-1.25 mm sesuai dengan keperluan. Plat tersebut dalam operasinya dibawah tekanan yang tinggi sehingga bentuknya zig-zag bergelombang. Plat-plat memiliki lubang di-empat sudutnya, tergantung bagaimana memasang plat tersebut di dalam PHE.

Jika plat dipasang dalam satu rangkaian, maka akan ada plat kanan pertama lalu plat kiri dan kemudian plat kanan lagi dan seterusnya. Bentuk plat yang zigzag bergelombang dalam operasionalnya saling mendukung. Aliran yang melalui dua plat akan tetap menempati bagian yang bersebrangan pada area yang konstan sehingga terbentuk turbulensi yang tetap menyebabkan partikel baru dalam cairan bersentuhan dengan panas yang disebarkan pada permukaan dan panas yang dipakai seragam. Plat dipasang dalam suatu bagan dimana dua cairan yang dipanaskan atau didinginkan akan selalu dipisahkan oleh plat.

b). Tubular Heat Exchanger (THE)

Sebelum diketemukan alat penukar panas PHE yang lebih kompak dan dapat diproduksi secara masal , maka alat penukar panas THE telah lebih dahulu digunakan. Perkembangan teknologi THE adalah diperkenalkannya Triple Tube THE dimana pipa terdalam dialiri media pemanas/pendingin, pipa ditengah dialiri produk dan pipa terluar dialiri media pemanas/pendingin lagi. Dengan sistem ini (dikembangkan oleh Stork-Amsterdam) koefisien pemindahan panas THE meningkat.

Alat penukar panas ini konstruksinya lebih sederhana, yaitu

1.    Pipa (tunggal atau kelompok pipa) yang dialiri produk

2.    Pipa bagian luar dengan diameter yang lebih besar (jacketed) yang dialiri media pemanas atau pendingin (double tube type THE).

a. PHE b. THE

Pustaka

Tjahjadi, C. dan H. Marta. 2011. Pengantar Teknologi Pangan. Universitas Padjajaran. Bandung.

Setya, A. W. 2012. Teknologi Pengolahan Susu. Fakultas Teknologi Pertanian Universitas Slamet Riyadi. Surakarta.


Karakteristik Susu

Karakteristik Susu

1.1        Susu

Susu berarti cairan bergizi yang dihasilkan oleh kelenjar susu  dari  mamalia betina. Susu adalah sumber gizi utama bagi bayi sebelum mereka dapat mencerna makanan padat. Susu binatang (biasanya sapi) juga diolah menjadi berbagai produk seperti mentega, yoghurt, es krim, keju, susu kental manis, susu bubuk dan lain-lainnya untuk konsumsi manusia. Semua orang di dunia ini membutuhkan susu untuk menopang kehidupannya. Baik dari bayi sampai orang yang sudah lanjut usia.

Dewasa ini, susu memiliki banyak fungsi dan manfaat. Untuk umur produktif, susu membantu pertumbuhan mereka.Sedangkan untuk orang lanjut usia, susu membantu menopang tulang agar tidak keropos. Susu mengandung banyak vitamin dan protein. Oleh karena itu, setiap orang dianjurkan minum susu. Sekarang banyak susu yang dikemas dalam bentuk yang unik.Tujuan dari ini agar orang tertarik untuk membeli dan minum susu. Ada juga susu yang berbentuk fermentasi. 

2.1       Komposisi susu

Dipandang dari segi gizi, susu merupakan bahan makanan yang hampir semua sempurna dan merupakan makanan alamiah bagi hewan menyusui yang baru lahir, dimana susu merupakan satu-satunya sumber makanan pemberi kehidupan sesudah melahirkan. Secara biologis, susu merupakan sekresi fisiologis kelenjar ambing sebagai makanan dan proteksi imunologis (immunologis protection) bagi bayi mamalia.

2.1.1    Komposisi kimia Susu

Secara kimia susu adalah emulsi lemak dalam air yang mengandung gula, garam-garam mineral dan protein dalam bentuk suspense koloidal. Komponen utama susu adalah air, lemak, protein (kaseindan albumin), laktosa (gula susu) dan abu. Komponen susu selain air merupakan Total Solid (TS) dan Total Solidtanpa komponen lemak merupakan Solid non Fat (SNF). Beberapa istilah lain yang biasa digunakan sehubungan dengan komponen utama susu ini adalah plasma susu atau susu skim, yaitu bagian susu yang mengandung semua komponen kecuali lemak dan serum susu atau biasa disebut Whey, yaitu bagian susu yang mengandung semua komponen susu kecuali lemak dan kasein.

Pada umumnya kandungan air dalam susu berkisar antara 82 – 90 persen, lemak antara 2,5 – 8,0 persen, kasein antara 2,3 – 4,0 persen, gula antara 3,5 – 6,0 persen, albumin antara 0,4 – 1,0 persen dan abu antara 0,5 – 0,9 persen.

Tabel 2.1 Komposisi Susu Segar Sapi

KomponenPersentase
Air
Bahan padat (TS)
Lemak
Protein
Gula
Abu
87,25
12,75
3,80
3,50
4,80
0,65

Beberapa faktor yang mempengaruhi konsentrasi komponen-komponen dalam susu ialah mastitis, tahapan dalam periode laktasi, musim dan keadaan makanan. Variasi komposisi susu berdasarkan musim erat kaitannya dengan kombinasi pengaruh suhu dan pemberian makanan. Suhu yang tinggi dan kualitas makanan yang buruk akan menyebabkan kandungan solid non fatdalam susu menjadi rendah. Sebaliknya makanan yang berkualitas baik dan suhu rendah cenderung akan meningkatkan kandungan solid non fat dalam susu.

Susu yang dihasilkan pada awal periode laktasi mempunyai kandungan solid non fat yang tinggi, kemudian menurun pada periode laktasi 40 – 60 hari dan akan meningkat kembali secara gradual sampai bulan keenam periode laktasi, diikuti dengan kenaikan yang tajam pada akhir periode laktasi.

2.1.1.1 Air

Air yang tergantung dalam susu terutama berfungsi sebagai pelarut bagi komponen-komponen susu yang dapat larut atau membentuk suspense.

2.1.1.2 Lemak susu

Lemak susu yang juga disebut sebagai butter fat merupakan komponen yang sangat penting dalam susu, bahkan secara komersial lemak susu merupakan komponen yang sangat berharga. Flavor susu dan sebagian besar produk susu olahan terutama ditimbulkan oleh kandungan lemak dalam susu.

Lemak susu berbentuk butiran-butiran dengan diameter yang bervariasi antara 0,001 mm sampai 0,01 mm tergantung pada keturunan, tahap-tahap dalam periode laktasi dan keadaan masing-masing sapi. Butiran-butiran atau yang juga disebut globula, lemak mempunyai ukuran paling besar pada dua minggu pertama periode laktasi dan laju penurunan ukuran yang tercepat terjadi selama dua bulan berikutnya. Setelah itu laju penurunan ukuran berlangsung lambat tetapi terus terjadi secara kontinyu sampai akhir periode laktasi.

Globula lemak tersebar merata didalam susu sebagai emulsi lemak dalam air, dimana globul lemak berada dalam fase terdispersi. Setiap globul lemak dilapisi oleh lapisan tipis yang terdiri dari protein dan fosfolipida, terutama lesitin yang terdapat dalam jumlah kecil didalam susu. Adanya lapisan ini menyebabkan globul lemak tidak dapat bergabung satu sama yang lain, sehingga emulsi susu menjadi stabil. Pengadukan mekanis seperti pada proses churning dapat merusak lapisan protein fosfolipida tersebut, sehingga globula-globula lemak akan bergabung menjadi satu dan menghasilkan butter.

Asam-asam lemak terpenting yang terdapat dalam susu adalah asam butirat, kaproat, kaprilat, kaprat, laurat, miristat, palmitat, oleat, stearat dan linoleat. Adanya asam butirat dalam lemak susu menyebabkan susu mempunyai karakteristik yang berbeda karena tidak ada lemak-lemak hewan lainnya yang mengandung asam butirat. Sekitar 60 – 65 persen diantara asam-asam lemak tersebut merupakan asam lemak jenuh dan sisanya sekitar 35-40 persen merupakan asam lemak tidak jenuh.

Sebagian besar asam-asam lemak dalam lemak susu merupakan asam lemak dengan jumlah atom karbon genap, yaitu untuk asam-asam lemak jenuh mulai dari asam butirat dengan 4 atom C sampai asam kerotat dengan 26 atom C. Asam miristat, palmitat dan stearat berjumalah 72 – 78 persen dari total asam lemak jenuh dan 45 -50 persen dari total asam lemak yang terdapat dalam lemak susu. Asam-asam lemak dengan rantai bercabang, asam-asam lemak berantai lurus dengan jumlah atom C ganjil dan asam-asam lemak berantai lurus dengan jumlah atom C 20-26 terdapat dalam susu dengan konsentrasi yang sangat tinggi.

Asam-asam lemak tidak jenuh yang terdapat dalam susu mempunyai panjang rantai antara 10 – 24 atom C dan terdapat dalam konfigurasi geometris yang berbeda-beda. Asam oleat dengan satu ikatan rangkap merupakan komponen utama dalam lemak susu, yaitu mencapai sekitar 30 persen dari total asam lemak dalam susu. Sedangkan asam-asam lemak dengan dua atau lebih ikatan rangkap hanya terdapat 3 – 5 persen. Komposisi asam-asam lemak dalam lemak susu dapat dilihat pada tabel 2.2.

Tabel 2.2 Komposisi asam-asam lemak dalam lemak susu

Asam LemakTitik cair(0C)Rata-rata(%)
Volatil
Bersifat larut:
–          Butirat
–          Kaproat
–          Kaprilat
–          Kaprat
Bersifat tidak larut:
–          Laurat


8,41
0,11
5,43
1,04

8,0


2,93
1,90
0,79
1,57

5,85
Non-Volatil
Tidak larut
–          Mirisat
–          Palmitat
–          Steara
t–          Oleat
–          Linoleat


58,06
4,07
0,01
4,0
-17,8


18,78
15,17
14,91
31,90
4,50

Lemak-lemak yang terbentuk dari asam-asam lemak yang mudah menguap (volatila) bersifat tidak stabil dan mudah terurai, sehingga mempengaruhi flavor susu. Timbulnya bau tengik pada butter disebabkan karena terbentuknya asam lemak bebas terutama asam butirat. Cara-cara pengolahan dan penyimpanan yang baik dan diterapkan dalam industry pengolahan susu tidak menyebabkan perubahan-perubahan kimiawi yang nyata terhadap asam-asam lemak jenuh dalam susu. Sebaliknya asam-asam lemak tidak jenuh biasanya mengalami perubahan yang cukup nyata berupa kerusakan oksidatif terhada susu dan produk-produk hasil olahan susu.

Keturunan, jenis dan mutu makanan serta musim merupakan faktor-faktor utama yang mempengaruhi komposisi lemak susu. Faktor-faktor tersebut terutama berpengaruh terhadap kandungan asam butirat, palmitat, stearat dan asam oleat dalam lemak susu. Kenaikan konsentrasi asam-asam lemak dengan titik cair rendah seperti asam butirat dan asam oleat akan menghasilkan lemak susu dengan konsentrasi yang lunak, sedangkan kenaikan konsentrasi asam stearat akan menghasilkan lemak susu yang keras.

Lesitin merupakan fosfolipida utama yang terdapat dalam susu. Jenis-jenis fosfolipida lainnya seperti sefalin dan sfingomiselin hanya terdapat dalam konsentrasi yang sangat kecil. Lesitin terdapat pada bagian permukaan globul lemak dan bersama-sama dengan protein membentuk lapisan yang melindungi globul lemak sehingga tetap terdispersi dalam bentuk emulsi lemak/air. Konsentrasi lesitin berkisar antara 0,027 – 0,044 persen dalam susu, 0,013 – 0,035 persen dalam susu skim 0,14 – 1,16 persen dalam buttermilk yang dibuat dari sweet cream dan 0,10 – 0,17 persen dalam buttermilk yang dibuat dari soured cream.

2.1.1.3 Protein susu

Kasein merupakan jenis protein terpenting dalam susu dan terdapat dalam bentuk kalsium kaseinat. Kasein merupakan partikel-partikel halus berdiameter sekitar 80 µm dan membentuk suspense koloidal dalam susu. Kasein dapat diendapkan dengan asam, alkohol, renet, dan logam berat. Asam dapat memindahkan kasein dari kalsium kaseinat sehingga diperoleh endapan kasein yang terpisah dari kalsium. Pada suhu yang tinggi jumlah asam yang diperlukan untuk koagulasi kasein lebih sedikit dibandingkan jika koagulasi dilakukan pada suhu rendah. Susu segar mempunyai pH sekitar 6,6. Apabila pH tersebut diturunkan sampai pada pH 4,7, susu mulai membentuk Curd. pH 4,7 ini merupakan titik isoelektrik kasein. Berat molekul kasein berkisar antara 12.800 – 375.000.

Kasein adalah protein yang bermutu tinggi karena mengandung semua asam-asam amino esensial. Karena itu kasein baik dalam susu maupun dalam susu maupun dalam produk-produk olahan susu merupakan komponen yang penting. Kasein dalam susu terdiri dari tiga fraksi yang berbeda, yaitu α-kasein, β-kasein dan γ-kasein. Tiap fraksi mengambil bagian berturut-turut sekitar 75 persen, 22 persen dan 3 persen. Perbedaan komposisi dari ketiga fraksi disajikan dalam tabel 2.3.

Tabel 2.3 Komposisi dan sifat-sifat komponen kasein

Komposisiαβγ
Nitrogen (%)
Fosfor (%)
Sulfur (%)
Titik isoelektrik (pH)
Mobilitas (µ)
Rotasi spesifik (x   ) 025
15,58
0,99
0,75
4,7
-6,75
-90,5
15,53
0,55
0,86
4,9
-3,05
-125,2
15,40
0,11
1,03
5,8
-2,01
-131,9

Berbeda dengan kasein, albumin merupakan protein yang tidak mengandung fosfor. Pada umumnya albumin dianggap berbentuk larutan sejati dalam susu, tetapi albumin berbentuk larutan koloidal yang sangat halus. Albumin memiliki berat molekul yang lebih rendah daripada kasein, yaitu berkisar antara 1.000 – 25.000.

Pada suhu kamar, albumin tidak berkoagulasi oleh rennet atau asam, tetapi dengan pemanasan pada pH 4 – 5, albumin akan mengendap. Albumin atau lakta albumin merupakan bagian dari protein serum susu yang bersifat larut dalam larutan ammonium sulfat netral setengah jenuh atau dalam larutan magnesium sulfat jenuh. Fraksi protein serum susu (protein susu skim selain kasein), yang bersifat tidak larut dalam larutan tersebut diatas disebut fraksi globulin atau laktoglobulin. Albumin juga merupakan jenis protein yang bermutu tinggi.

Jenis protein ketiga yang terdapat pada susu ialah laktoglobulin. Konsentrasi globulin merupakan protein utama dengan konsentrasi yang lebih tinggi daripada kasein dan merupakan peranan penting dalam memberikan kekebalan bayi yang baru lahir terhadap infeksi.

Globulin memiliki unsur-unsur yang sama dengan kasein, yaitu: karbon, hydrogen, oksigen, nitrogen, sulfur dan fosfor. Globulin dapat dipisahkan dari albumin melalui pengendapan dengan garam magnesium sulfat berlebih. Disamping kasein, albumin dan globulin dalam susu juga terdapat beberapa jenis protein lainnya yang walaupun terdapat dalam konsentrasi yang sangat rendah tetapi mempunyai peranan yang cukup berarti dalam nilai gizi susu dan produk susu, yaitu laktosa.

Laktosa terdapat dalam dua macam bentuk, yaitu α-laktosa dan β-laktosa. α-laktosa dapat berupa hidrat maupun anhidrat. Apabila α-laktosa atau β-laktosa dilarutkan dalam air, masing-masing bentuk laktosa akan berubah menjadi bentuk lain sampai tercapai keseimbangan. Oleh bakteri asam laktat, laktosa akan difermentasikan menjadi asam laktat.

2.1.2    Sifat fisik susu

2.1.2.1 Rasa

Susu segar yang diproduksi dalam kondisi ideal tidak memiliki flavor yang kuat, tetapi mempunyai rasa sedikit manis yang menyenangkan. Hal ini terutama disebabkan oleh hubungan antara kandungan laktosa dan klorida dalam susu. Apabila hubungan ini terganggu, seperti pada akhir periode laktasi atau dalam kondisi mastitis, dimana kandungan klorida relatif lebih tinggi, maka flavor susu dapat dipengaruhi, antara lain susu mempunyai rasa garam.

Kandungan lemak dan protein dalam susu merupakan komponen yang membentuk flavor susu, tetapi bukan merupakan komponen utama yang menentukan rasa susu. Susu dengan kandungan lemak dan bahan padat bukan lemak (SNF) yang rendah mempunyai rasa tawar atau flat, sedangkan susu dengan lemak dan SNF yang tinggi mempunyai flavor yang lebih kuat.

Kelainan-kelainan rasa dan bau susu dapat terjadi setiap saat dan kelainan ini merupakan keadaan yang tidak normal. Beberapa penyebab rasa dan bau susu yang tidak normal adalah kondisi fisik sapi, jenis makanan yang diberikan, penyerapan bau oleh susu karena kontak dengan lingkungan yang mempunyai bau keras, penguraian komposisi susu karena pertumbuhan bakteri atau mikroba lainnya dalam susu, bau yang berasal dari benda-benda asing yang terdapat dalam susu dan perubahan-perubahan bau karena reaksi kimia.

2.1.2.2 Warna

Warna susu berkisar antara putih kebiruan sampai kuning keemasan, yaitu tergantung pada keturunan jenis makanan serta kandungan lemak dan bahan padat dalam susu. Warna putih susu berasal dari cahaya yang direfleksikan oleh globula-globula lemak, partikel koloidal kasein dan kalsium fosfat yang tesebar dalam susu. Warna kuning susu disebabkan oleh pigmen karoten yang larut dalam lemak susu. Susu yang lemaknya sudah dipisahkan atau susu dengan kandungan lemak yang rendah mempunyai kebiruan.

Pigmen lain yang terdapat dalam susu ialah riboflavin, tetapi warnanya tidak timbul sampai kandungan lemak dan kasein dalam susu dipisahkan seperti pada pembuatan keju. Pigmen ini larut dalam air dan menimbulkan warna kuning kehijauan pada whei. Beberapa mikroba dapat mempengaruhi warna susu, misalnya susu yang berwarna merah dan biru, masing-masing disebabkan oleh Serratia marcescens dan Pseudomonas cynnogenes. Timbulnya warna akibat mikroba merupakan keadaan yang tidak normal.

2.1.2.3 Titik beku

Susu mempunyai titik beku rata-rata pada suhu -0,550C sampai -0,610C. Titik beku susu dipengaruhi oleh komponen-komponen yang terlarut, terutama laktosa dan klorida. Kedua komponen ini mempunyai hubungan yang berlawanan, yaitu apabila salah satu komponen meningkat, komponen lainnya akan menurun. Kandungan lemak dan kasein dalam susu dalam susu tidak mempengaruhi titik beku susu.

Variasi kandungan laktosa dan mineral dalam susu sangat kecil, sehingga titik beku susu relatif konstan. Keadaan ini dapat digunakan untuk mengetahui ada tidaknya pemalsuan susu, yaitu pemalsuan dengan cara menambahkan air kedalam susu. Penambahan 1 persen air (v/v) kedalam susu akan meningkatkan titik beku susu sebesar 0,00550C. Susu dengan titik beku yang lebih rendah daripada -0,5250C, dapat dianggap bebas dari penambahan air.

Pembekuan menyebabkan perubahan-perubahan fisik dan flavor susu yang tidak dapat kembali ke keadaan semula. Pembekuan menyebabkan globula lemak kehilangan bentuk emulsinya. Globula lemak tersebut akan bergabung satu sama lain, menghasilkan bentuk dan ukuran lemak yang berbeda. Kasein juga akan dipengaruhi oleh proses pembekuan. Sebagian kasein dipecah dari bentuknya dalam susu sebagai kalsium kaseinat dan mengendap dalam bentuk serpihan.

2.1.2.4 Titik didih

Titik didih susu sedikit lebih tinggi daripada titik didih air murni, yaitu rata-rata 100,170C. Hal ini karena bahan-bahan yang terlarut dalam susu akan meningkatkan titik didih.

2.1.2.5 Berat jenis

Berat jenis rata-rata susu penuh yang normal adalah 1,032 pada suhu 160C. Susu lebih berat daripada air karena semua komponen padatan kecuali lemak, mempunyai berat jenis yang lebih tinggi daripada air. Pada Tabel 2.4 menunjukkan berat jenis dari berbagai komponen susu.

Tabel 2.4 Berat jenis komponen susu

Komponen SusuBerat Jenis
Sharp and Hard
Pada suhu 300C
Richmond
Pada suhu 150C
Lemak
Plasma bahan padat
Laktosa
Asam sitrat
Protein
Abu
0,91
31,59
21,630
1,680
1,350
3,500
0,93
1,61
61,666
(sebagai laktosa)
1,34
65,500

Susu normal mempunyai kisaran berat jenis antara 1,029 – 1,035. Susu dengan kandungan lemak yang rendah, sebaliknya susu dengan kandungan lemak yang tinggi mempunyai berat jenis yang tinggi pula. Hal ini terutama karena pada suhu yang normal, kenaikan kandungan lemak susu juga diikuti dengan kenailkan kandungan bahan padatan bukan lemak (SNF), sehingga gabungan berat jenis dan komponen-komponen susu lebih menentukan berat jenis daripada pengaruh tunggal lemak susu.

2.1.2.6 Panas jenis

Panas jenis dari suatu bahan merupakan rasio antara jumlah panas yang dipelukan untuk menaikkan suhu satu derajat dan jumlah panas yang dibutuhkan untuk menaikkan suhu air dengan massa yang sama sebanyak satu derajat. Dengan mengetahui panas jenis suatu bahan, maka jumlah panas yang harus diberikan atau dipindahkan untuk menaikkan atau menurunkan suhu bahan tersebut sampai pada suhu tertentu dapat dihitung. Tabel 2.5 menunjukkan panas jenis susu dan produk susu.

Tabel 2.5 Panas jenis susu dan produk susu

ProdukPanas jenis
00C150C400C600C
Whole milk
Susu skim
Whey
Cream 15%
Cream 30%
Cream 45%
Butter
Butter fat
0,920
0,940
0,978
0,750
0,673
0,606


0,938
0,943
0,976
0,723
0,983
1,016


0,930
0,952
0,974
0,899
0,852
0,787
0,556
0,500
0,918
0,963
0,972
0,900
0,860
0,793
0,580
0,530

2.1.2.7 Tegangan permukaan

Tegangan permukaan susu penuh sebesar 55,3 dyne, susu skim sebesar 57,4 dyne dan 30 – 35% krim sebesar 49,6 dyne. Kenaikan kandungan lemak dan protein akan menurunkan tegangan permukaan susu, pasteurisasi dapat menaikkan tegangan permukaan susu sedangkan homogenisasi dapat menurunkan tegangan permukaan tersebut. Kenaikan suhu juga dapat menurunkan tegangan permukaan susu.

2.1.2.8 Viskositas

Susu dengan kandungan lemak rata-rata 4,32 persen mempunyai viskositas rata-rata 1,6314 centipoise, sedangkan susu skim mempunyai viskositas rata-rata 1,404 centipoise. Viskositas susu dipengaruhi oleh berturut-turut mulai dari yang paling besar pengaruhnya adalah kasein, lemak dan albumin. Suhu rendah akan menyebabkan kenaikan viskositas susu karena terjadi clumping dari globula-globula lemak. Pengadukan mekanis dapat memecah plumping globula lemak tesebut sehingga viskositas menurun.

Homogenisasi dapat meningkatkan susu penuh, tetapi sedikit menurunkan viskositas susu skim. Hal ini disebabkan karena homogenisasi menyebabkan globula lemak menjadi kecil, sehingga mempunyai luas permukaan yang lebih besar. Luas permukaan yang lebih besar menyebabkan lapisan film protein yang terserap pada permukaan globul lemak lebih banyak, sehingga viskositas meningkat.

Suhu pasteurisasi dapat menurunkan viskositas karena pecahnya clumpingglobula-globula lemak. Tetapi pada suhu tinggi dibawah tekanan, viskositas akan meningkat karena perubahan sifat fisik protein. Viskositas susu juga akan meningkat dengan meningkatnya kandungan lemak dalam susu.

2.1.2.9 Air terikat

Susu, krim dan produk-produk susu berbentuk cairan lainnya mengandung air terikat dalam jumlah yang cukup berarti. Kasein mengikat sekitar 50% dari kandungan total air terikat, albumin mengikat sekitar 30%, membran globula lemak 15% dan bahan padat lainnya mengikat sekitar 4% air terikat.  Pasteurisasi dapat menurunkan air terikat dalam susu, sedangkan pemeraman umumnya menaikka kandungan air terikat.

2.1.2.10 Buih

Pembentukan buih oleh susu dan produk-produk susu merupakan peristiwa yang biasa terjadi. Buih yang stabil merupakan sifat yang dikehendaki pada whipping cream. Tetapi pada proses pengisian susu kedalam kaleng atau botol dan proses pemisahan susu, terbentuknya buih tidak dikehendaki.

Protein merupakan penyebab utama terbentuknya buih. Protein teradsorbsi pada lapisan film tipis yang mengelilingi gelembung udara, sehingga udara yang terperangkap dalam gelembung tersebut menjadi stabil. Suhu rendah 20C – 40C menyebabkan pembentukan buih dengan volume yang paling besar, sedangkan suhu 160C – 320C menghasilkan volume buih yang terendah. Pengaruh suhu terhadap pembentukan buih dapat dilihat pada Tabel 2.6.

Pasteurisasi tidak mempunyai pengaruh yang berarti terhadap pembentukan buih. Tetapi homogenisasi dapat meningkatkan buih pada suhu 40 – 270C dan menurunkan volume buih pada suhu 600C. Kandungan lemak dalam susu menimbulkan efek menekan pembentukan buih, sedangkan bahan padatan bukan lemak (SNF) dapat meningkatkan pembentukan buih.

Tabel 2.6 Pengaruh suhu terhadap pembentukan buih pada susu

Lesitin mempunyai sifat memecah buih. Pengadukan krim dalam proses churning akan membebaskan sebagian besar lesitin yang kemudian akan terikut kedalam buttermilk, sehingga hanya sedikit buih yang terbentuk pada buttermilk.

Buih yang terbentuk pada susu, krim dan buttermilk terdiri dari 2 tipe, yaitu tipe protein dan buih tipe fosfolipid-protein. Buih tipe protein akan dominan pada suhu yang lebih tinggi. Apabila pembentukan buih pada susu skim dilakukan pada suhu 350C, maka penambahan lemak sampai tingkat 5 persen akan menurunkan volume dan stabilitas buih pada susu skim tersebut. Penambahan lemak lebih lanjut yaitu sampai tingkat 30% akan menaikkan volume dan stabilitas buih yang selanjutnya akan konstan jika lemak ditambahkan lagi sampai lebih dari 30%. Apabila pembentukan buih dilakukan pada suhu 60C volume buih tidak mengalami perubahan walaupun kandungan pada susu skim lemaknya dinaikkan.


GOOD LABORATORY PRACTICE (GLP)

GOOD LABORATORY PRACTICE (GLP)

  1. Prinsip berlaboratorium yang baik

Secara garis besarnya,  prinsip berlaboratorium yang baik dicirikan dengan dimilikinya sarana, metode, peralatan dan kemampuan analisis, serta sistim pengorganisasian. Sistim pengorganisasian dan manajemen merupakan unsur penting dalam membangun GLP.  Tanpa pelaksanaan manajemen yang menyeluruh dan keterlibatan semua personel, maka sistem GLP tidak akan berfungsi sebagaimana mestinya dan tidak memiliki kredibilitas.

Untuk dapat melaksanakan kegiatan berlaboratorium yang baik, setiap laboratorium harus memiliki sarana dan peralatan laboratorium serta metode pengujian yang akan mendasari pelaksanaan semua kegiatan laboratorium.  Komponen- komponen yang telah disebut akan diorganisir oleh seorang manajer, sehingga laboratorium akan memiliki kemampuan untuk melakukan perencanaan mulai dari pengambilan sampel, penanganan sampel, pengujian, pencatatan dan pelaporan.

Struktur organisasi laboratorium dan tanggungjawab setiap personal yang sesuai dengan kompetensinya harus ditentukan dengan jelas.  Struktur organisasi dan deskripsi pekerjaan yang jelas dengan sendirinya memperlihatkan fungsi laboratorium dan hubungan dari setiap bagian dalam organisasi laboratorium.

Personil harus memiliki kompetensi sesuai dengan pendidikan, pelatihan dan pengalamannya.  Jumlah personil harus mencukupi untuk melaksanakan pekerjaan yang diperlukan dilaboratorium tepat waktu.  Rekaman data kualifikasi pendidikan, pelatihan yang telah diikuti, pengalaman dan jabatan personil harus didokumentasikan.

Salah satu persyaratan personil adalah harus mengetahui dan memahami teori dasar, teknik dan metode analisis, serta mengetahui dan faham dengan bekerjanya instrumen.

Bagian terpenting dari GLP adalah persyaratan dan kewenangan dari kepala laboratorium.  Kepala laboratorium bertanggungjawab langsung secara keseluruhan terhadap teknik pekerjaan laboratorium, menjamin penerimaan protokol analisis dari pengelola sponsor, laporan akurat dan sahih dari data percobaan, pelaporan keadaan, tidak terduga, sistem uji telah sesuai persyaratan, semua peraturan GLP ditaati dan data diarsipkan dengan baik.

  1. Pemeliharaan Laboratorium

Adapun ruang lingkup kegiatan pemeliharaan laboratorium antara lain mencakup pembersihan area kerja, pembersihan dan penyimpanan peralatan, memantau stok bahan dan metode pengujian. Laboratorium memiliki beberapa kelengkapan dasar yang harus dibersihkan secara rutin.  Meja kerja merupakan kelengkapan dasar laboratorium.  Meja ini sebaiknya terbuat dari bahan yang kuat, kedap air dan tahan bahan kimia.  Bagian permukaan meja kerja halus dan rata sehingga mudah dibersihkan.

Selain kondisi meja, pengaturan jarak antar meja juga perlu diperhatikan.  Jarak antar meja harus diatur sedemikian rupa sehingga tidak mengganggu aktivitas laboratorium.    Laboratorium memiliki dua sistem pencahayaan, yaitu pencahayaan alami dan buatan.  Pencahayaan alami mengandalkan matahari sebagai sumber cahaya.  Adapun pencahayaan buatan (artifisial) mengandalkan sinar lampu sebagai sumber cahaya. Penentuan sistem pencahayaan yang digunakan tergantung dari fungsi laboratorium.  Laboratorium yang digunakan untuk kultur mikroba akan menggunakan sistim pencahayaan buatan yang tidak terlalu terang tetapi konstan setiap saat. Ventilasi ruang kerja juga harus dibersihkan agar mendapatkan sirkulasi udara yang baik.  Ventilasi ada yang alami dan buatan.  Ventilasi alami digunakan untuk ruangan luas dan terbuka. Ventilasi buatan digunakan untuk menciptakan sirkulasi udara di ruang tertutup.  Volume aliran udara yang bergerak relatif kecil dibandingkan ventilasi alami.  Untuk menciptakan aliran udara pada ventilasi tertutup digunakan exhauser atau blower.

Temperatur dan kelembaban ruangan laboratorium juga perlu dikendalikan, terutama di ruang analisis dan ruang penyimpanan peralatan, bahan kimia, dan mikroba.  Temperatur ruangan dapat dikendalikan dengan menggunakan Air Condition (AC). Sedangkan kelembaban udara dalam ruangan diatur dengan menggunakan humidifier. Energi yang dimiliki laboratorium bersumber dari Perusahaan Listrik Negara (PLN).  Besarnya daya listrik disesuaikan dengan besarnya aktivitas yang dilakukan di laboratorium. Untuk mecegah hal yang tidak diinginkan, laboratorium dilengkapi dengan generator (genset) sebagai sumber energi alternatif. Air merupakan kebutuhan pokok yang menunjang seluruh kegiatan laboratorium.  Kebutuhan air diperoleh dari Perusahaan Air  Minum (PAM) dan air sumur.  Volume air yang harus disediakan disesuaikan dengan aktivitas laboratorium. Semua fasilitas yang terdapat di laboratorium harus dipelihara dan diperiksa secara rutin.  Pemeriksaan rutin dilakukan setiap tiga bulan sekali.  Pemeliharaan laboratorium ditujukan untuk memberikan rasa nyaman, tenang dan tertib. Untuk meningkatkan mutu laboratorium, diperlukan pengaturan akses ke dalam ruangan laboratorium.  Ada ruang dengan akses bebas dan ada ruang dengan akses terbatas. Penentuan ruang dengan akses terbatas ditujukan untuk meningkatkan keamanan dan kerahasiaan sampel dan data hasil pengujian.

2.1  Pembersihan area kerja

Pembersihan area kerja laboratorium harus dilakukan agar bahan pangan yang akan diuji di laboratorium tidak mengalami pencemaran, baik secara fisik, kimiawi, atau biologis. Pembersihan area kerja dilakukan berdasarkan prinsip-prinsip SSOP (Bab VI dalam buku ini) agar area kerja terbebas dari sumber kontaminan.  Pembersihan area kerja laboratorium dilakukan dengan menggunakan zat pembersih yang sesuai.  Untuk pengujian bahan pangan, zat pembersih yang digunakan harus mampu berperan sebagai sterilisator dan tidak memiliki aroma yang kuat.  Penggunaan zat pembersih yang beraroma tidak disarankan mengingat beberapa bahan pangan mampu menyerap aroma tersebut. Senyawa kimia yang tumpah harus ditangani secara cermat agar tidak membahayakan.  Penanganan bahan kimia tersebut harus berdasarkan prosesur SSOP, terutama untuk senyawa kimia beracun, mudah terbakar atau mudah meledak.

Sama halnya seperti senyawa kimia yang tumpah, penanganan bahan kimia sisa atau limbah laboratorium harus dilaksanakan sesuai prosedur, terutama untuk senyawa berbahaya karena dapat menimbulkan keracunan, kebakaran, ledakan, atau menyumbat saluran air.

Bahan sisa harus ditangani secara baik agar tidak menimbulkan masalah.  Penanganan bahan kimia sisa dapat dilakukan dengan cara :

  1. Pengenceran. Pengenceran banyak dilakukan untuk menangani bahan kimia berbentuk cair dan gas. Bahan kimia yang sudah encer selanjutnya dapat dibuang ke sistem saluran pembuangan air.  Apabila tidak larut dalam air, sisa/bekas limbah ditampung dalam botol berlabel dan jangan dibuang ke sistem saluran air.  Sejumlah pertanyaan yang perlu dijawab bila akan melakukan penanganan bahan kimia dengan pengenceran, adalah : (1) apakah bahan tersebut meracuni tumbuhan atau binatang?; (2) dapatkan bahan kimia tersebut diencerkan?; (3) Apakah bahan kimia tersebut dapat bercampur dengan air; dan (4) apakah bahan tersebut berubah jika diencerkan.  Jika jawaban yang ada memberikan kepuasan bagi semua pihak maka penanganan bahan sisa /bekas dengan pengenceran merupakan salah satu cara penanganan yang baik.
  2. Penggunaan senyawa kimiawi. Penerapan prinsip-prinsip kimiawi sering dilakukan untuk menangani bahan sisa/ bekas sehingga tidak menimbulkan bahaya atau menyebabkan terjadinya banjir akibat penyumbatan. Beberapa bahan kimia yang digunakan dalam aktivitas penanganan bahan sisa/ bekas dan dapat digunakan untuk menghancurkan atau menetralisir bahan sisa bekas.
  3. Pengumpulan. Bahan sisa/ bekas yang tidak dapat dilakukan pengenceran sebaiknya dikumpulkan dan disimpan dalam wadah khusus dan selanjutnya baru dibuang.  Pecahan gelas dan sisa logam dikumpulkan dalam wadah terpisah dan masingmasing diberi label.
  4. Penguburan. Penguburan dilakukan untuk menangani bahan berasal dari binatang dan sejenisnya.  Bahan tersebut selanjutnya dikubur dalam lubang yang tekah disiapkan.
  5. Pembakaran. Bahan sisa/ bekas yang mudah terbakar sebaiknya ditangani dengan cara dibakar agar aman.  Pelaksanaan pembakaran sebaiknya dilakukan pada tempat yang mendukung.  Asap yang terbentuk dari proses pembakaran yang tidak sempurna dapat menyebabkan iritasi pada kulit atau keracunan.
  6. Lemari uap. Gas yang tidak berbahaya dapat dilepaskan ke atmosfir melalui lemari uap, sedangkan gas beracun (klorin dan nitrogen dioksida, NO2) dibuang melalui lemari uap dengan system ventilasi.

Pembersihan area kerja ditujukan untuk sterilisasi ruangan dan kenyamanan dalam melakukan pekerjaan analisis.  Keberadaan sumber pencemar sudah ditekan seminimal mungkin sehingga tidak mampu mempengaruhi hasil analisis.  Kondisi ruang kerja yang bersih dan tertata baik akan menimbulkan kenyamanan dalam bekerja.

2.2  Pembersihan dan penyimpanan peralatan

Kualitas mutu laboratorium pengujian ditentukan oleh validatas data hasil pengujian.  Oleh karenanya, mutu laboratorium pengujian perlu ditunjang dengan peralatan uji dan manajemen yang handal.  Dengan peralatan dan manajemen yang handal, maka laboratorium pengujian akan dapat menghasilkan data pengukuran yang akurat dan valid.

Peralatan yang harus dimiliki oleh sebuah laboratorium pengujian adalah semua peralatan, baik yang digunakan untuk pengambilan sampel, pengukuran dan pengujian sampel, termasuk peralatan yang digunakan untuk preparasi sampel yang akan diuji, pemrosesan, serta analisis data pengujian.  Untuk menjaga mutu hasil pengujian, peralatan harus dioperasikan oleh personel yang berwenang.

Untuk menjaga agar peralatan tetap terawat, personel yang bertanggungjawab terhadap peralatan harus dilengkapi dengan instruksi yang mutakhir untuk menggunakan dan merawat peralatan, termasuk setiap panduan yang relevan, seperti yang disediakan oleh produsen peralatan tersebut.   Instruksi tersebut harus siap tersedia untuk digunakan oleh personel laboratorium yang sesuai.

Semua peralatan yang bersangkutan dengan sistem mutu harus telah dikalibrasi dan/atau diperiksa untuk memenuhi persyaratan spesifikasi laboratorium dan sesuai dengan spesifikasi standar yang relevan.   Program kalibrasi peralatan harus ditetapkan untuk peralatan dan instrumentasi yang mempunyai pengaruh signifikan pada hasil uji. Di samping itu, semua peralatan pengujian, baik perangkat lunak maupun perangkat keras, harus dilindungi dari pengoperasian yang tidak semestinya sedemikian sehingga menyebabkan hasil pengujian tidak valid. Selain itu, untuk mengendalikan dan memelihara peralatan diperlukan status operasional peralatan. Karena itu, setiap peralatan dan perangkat lunak yang mempengaruhi hasil uji harus diidentifikasi secara khusus untuk masing-masing peralatan tersebut. Rekaman harus dipelihara untuk setiap peralatan dan perangkat lunak yang sesuai untuk pengujian yang dilakukan. Rekaman yang dibuat harus memuat sekurang-kurangnya

  1. identitas dan perangkat lunaknya;
  2. nama manufaktur, identitas tipe, nomor seri atau identitas khusus lainnya;
  3. cek kesesuaian peralatan dengan spesifikasi
  4. lokasi peralatan;
  5. instruksi manufaktur, jika ada dan acuan keberadaannya;
  6. tanggal, hasil, salinan laporan dan sertifikat semua kalibrasi, penyetelan, persyaratan penerimaan, dan tanggal kalibrasi berikutnya;
  7. rencana perawatan, dan perawatan yang telah dilakukan;
  8. kerusakan, kegagalan pemakaian, modifikasi, atau perbaikan peralatan.

Dengan mengetahui dan mencermati laporan mengenai status peralatan, laboratorium pengujian akan terhindar dari hal-hal yang tidak diinginkan.  Laboratorium dapat melakukan evaluasi, khususnya menyangkut penggunaan peralatan serta mutu data yang dihasilkan. Apabila dari laporan status peralatan diketahui penggunaan peralatan sampai lewat beban, salah penggunaan, memberikan hasil yang mencurigakan, dan telah terbukti kurang baik atau keluar dari batas yang ditetapkan, maka peralatan tersebut tidak boleh digunakan, serta harus diisolasi untuk mencegah penggunaannya, sampai ketidakberesan dapat diatasi.

Peralatan yang telah diketahui tidak berfungsi secara baik harus diberi label yang jelas dan diberi tanda “Tidak boleh digunakan”.  Peralatan tersebut dapat digunakan kembali apabila telah diperbaiki dan telah menunjukkan kebenaran unjuk kerjanya.

Laboratorium harus memeriksa pengaruh cacat/penyimpangan dari batas-batas yang telah ditentukan pada pengujian sebelumnya. Bila memungkinkan, semua peralatan yang berada di bawah pengendalian laboratorium dan memerlukan kalibrasi harus diberi label, kode, atau cara identifikasi lain, untuk menunjukkan status kalibrasi, termasuk tanggal kalibrasi terakhir kali dilakukan dan tanggal atau ketentuan kadaluwarsa saat kalibrasi yang bersangkutan digunakan.

Laboratorium hendaknya memastikan bahwa fungsi dan status kalibrasi peralatan telah diperiksa dan menunjukkan hasil yang baik sebelum peralatan dapat digunakan kembali. Apabila suatu peralatan memerlukan pemeriksaan antara sebelum status kalibrasi dinyatakan berhasil dengan baik, maka pemeriksaan itu juga harus dilakukan dengan prosedur yang benar. Agar peralatan dapat berfungsi dengan baik dan lancar untuk suatu prosedur pengujian, maka diperlukan pemeliharaan alat secara rutin. Hal ini selain dimaksudkan untuk mencegah terjadinya kerusakan, juga diharapkan dapat mengurangi resiko menurunnya unjuk kerjanya dan mengurangi resiko besarnya biaya perbaikan.

Peralatan laboratorium yang telah digunakan segera dicuci dan dikeringkan untuk kemudian disimpan pada tempatnya.  Pekerjaan ini dilakukan oleh penanggungjawab peralatan. Apabila diperlukan, operator atau analis dapat segera melakukan peminjaman kepada penanggung jawab peralatan.

Pembersihan peralatan gelas dilakukan sesuai prosedur.  Gunakan deterjen untuk menghilangkan kotoran ringan.  Untuk kotoran yang menempel kuat dapat digunakan reagen.  Peralatan yang sudah dibersihkan disimpan pada wadah penyimpanan yang telah disiapkan.

Peralatan laboratorium sangat menentukan kinerja dan keakuratan hasil analisis.  Peralatan sebaiknya selalu dalam kondisi bersih sehingga dapat dipergunakan setiap saat.  Peralatan yang terpelihara secara baik akan memperpanjang usia penggunaan alat tersebut.

Setelah digunakan, alat-alat tersebut sebaiknya selalu dipelihara dan disimpan sesuai prosedur.  Pisahkan peralatan yang terbuat dari gelas dengan peralatan logam karena masing-masing membutuhkan pemeliharaan dan penyimpanan berbeda.

Beberapa ketentuan yang harus diketahui dalam pemeliharaan peralatan gelas, plastik, porselen, atau logam antara lain adalah :

  1. Alat yang terbuat dari bahan gelas dibersihkan dengan sabun detergen dan bila perlu menggunakan sikat untuk membersihkan bagian yang sulit dijangkau. Bentuk sikat bermacam-macam, sehingga penggunaannya harus disesuaikan dengan bentuk alat yang akan dibersihkan.
  2. Alat yang terbuat dari bahan plastik mudah tergores. Oleh karena itu gunakan spon untuk mencegah goresan selama pembersihan.
  3. Cara untuk mengetahui apakah peralatan yang dicuci sudah benar-benar bersih adalah dengan membasahi wadah tersebut dengan air. Bila seluruh permukaan alat menjadi basah dengan membentuk lapisan air yang tipis, berarti peralatan sufah bersih.  Bila belum bersih, pada permukaan alat terbentuk kumpulan bintik-bintik air dipermukaannya.
  4. Noda minyak atau kerak yang melekat pada peralatan gelas dapat dibersihkan dengan cara merendam peralatan tersebut selama semalam dalam larutan pembersih yang terbuat dari 1 bagian asam sulfat (pekat) dan 9 bagian Kalium dikromat (3% aq.).  Keesokan harinya, peralatan tersebut dicuci dengan air PAM atau akuades yang mengalir.
  5. Peralatan yang sudah dibersihkan harus dikeringkan terlebih dahulu sebelum disimpan. Proses pengeringan dapat dilakukan pada rak pengering.
  6. Peralatan yang terbuat dari logam dapat dicuci dengan menggunakan sabun deterjen. Keringkan dahulu peralatan tersebut lalu disimpan pada tempatnya sehingga siap untuk digunakan pada kegiatan   berikutnya.  Ada beberapa ketentuan mengenai penyimpanan alat, yaitu sebagai berikut : (a) penyimpanan peralatan yang terbuat dari gelas; (b)  peralatan gelas seperti tabung reaksi, pipet atau buret dapat disimpan pada rak khusus atau pada kotak yang telah disediakan; (c) termometer yang telah digunakan harus dikeringkan terlebih dahulu dengan cara menyimpan pada rak khusus di ruangan
  7. terbuka pada suhu ruang, setelah kering simpanlah pada tempat yang telah disediakan.Statif yang terbuat dari bahan logam tidak perlu dilepas dari dasar, dan letakkan di bawah permukaan

Setelah digunakan, tabung reaksi harus dikosongkan dan direndam dalam air.  Tabung reaksi selanjutnya dicuci dengan air panas yang mengandung diterjen alkalin. Pencucian dilanjutkan dengan perendaman dalam air panas yang bersih.  Terakhir, tabung reaksi harus direndam dalam aquades dan dikeringkan. Tutup tabung reaksi harus dicuci dalam air panas segera setelah dimungkinkan.  Rebuslah tutup tabung reaksi selama dua menit dengan menggunakan aqudest.

Pipet yang telah digunakan harus segera direndam dalam air bersih yang dingin.  Cuci seperti di atas dan dilanjutkan dengan perendaman dalam air aquades.  Setelah dikeringkan, simpanlah pipet dalam wadahnya.

2.3  Memantau stok bahan 

Stok bahan kimia dan peralatan harus selalu dipantau agar dapat menjamin keberlangsungan proses pengujian di laboratorium.  Stok bahan kimia diperiksa dan dicatat.  Label kemasan yang telah rusak diperbaiki atau diganti.

Label harus memberikan informasi secara jelas mengenai jenis bahan kimia yang terdapat didalam kemasan dan cara penanganannya.  Label juga harus mencantumkan potensi bahaya dan kontaminasi yang mungkin terjadi.  Jelaskan pula mengenai kondisi kesehatan apabila terjadi kontaminasi.

  • Bahan Kimia

Bahan kimia yang digunakan di laboratorium dapat dikenali dengan beberapa cara, diantaranya dari sifatnya, fasanya, atau karakteristiknya.  Sifat paling umum dari bahan kimia adalah asam, basa, dan garam.

Fasa bahan kimia dapat berbentuk padatan, cairan, dan gas.  Bahan kimia berbentuk padatan dapat dibagi lagi menjadi bentuk kristal atau serbuk.

Panca indera dapat digunakan untuk mengenali bahan kimia.  Kemampuan menggunakan panca indera hanya dimiliki oleh orang tertentu atau yang sudah biasa bekerja di laboratorium.  Beberapa senyawa kimia memiliki karakteristik yang sudah dikenal, misalnya : tembaga sulfat bentuknya kristal berwarna biru, Yodium berbentuk kristal berwarna coklat ungu.

Cara lain yang dapat membantu mengenali sifat dari bahan kimia adalah dengan melihat dan memperhatikan simbol atau keterangan yang tercantum pada label.  Simbol yang tercantum pada label relatif sederhana dan komunikatif.  Misalnya gambar tengkorak menunjukkan bahwa bahan kimia tersebut beracun, gambar nyala api menyatakan bahwa bahan kimia tersebut mudah terbakar, sedangkan gambar ledakan akan memberi informasi bahwa bahan kimia tersebut mudah meledak.

  • Menuangkan Bahan

Menuangkan bahan merupakan kegiatan yang banyak dilakukan di laboratorium.  Bahan yang dituang dapat berupa bahan kimia berbahaya atau bahan kimia yang tidak berbahaya.  Bahan baku berbentuk cair juga memerlukan teknik penuangan, demikian pula dengan bahan cair yang mudah membeku, seperti media agar yang digunakan di laboratorium mikrobiologi sebagai media tumbuh mikroba.

Setiap akan menuangkan bahan sebaiknya baca secara teliti informasi yang terdapat dalam label atau prosedur kerja agar tidak terjadi kesalahan yang dapat menimbulkan kerugian atau kecelakaan.

Peganglah wadah bahan dengan baik.  Bila wadah ditempelkan label yang menerangkan isi dalam wadah, letakkan label tersebut di bawah telapak tangan.  Cara ini dimaksudkan untuk dapat mencegah adanya bahan yang menetes atau menempel pada label sehingga label tetap utuh.

  • Mengambil dan menuangkan bahan padat

Pengambilan dan penuangan bahan berbentuk padatan tergantung dari wadah yang digunakan.  Bila wadahnya berupa botol, maka pengambilan bahan kimia dapat dilakukan dengan memiringkan botol sedemikian rupa sehingga terdapat sedikit bahan yang masuk ke dalam tutup botol

Buka tutup botol tersebut secara hati-hati agar bahan kimia yang ada tidak kembali lagi ke dalam botol.  Ketuk tutup botol tersebut secara perlahan menggunakan telunjuk atau batang pengaduk, sehingga bahan kimia dapat jatuh pada tempat yang diinginkan.

Pengambilan bahan padat juga dapat dilakukan dengan menggunakan sendok atau spatula.  Sendok yang digunakan disesuaikan dengan panjang dan ukuran mulut botol.  Masukkan spatula atau sendok ke dalam botol dan ambil bahan kimia secukupnya.  Tuangkan bahan kimia ke tempat yang diinginkan dengan cara mengetuk secara perlahan spatula atau sendok tersebut sampai tercapai jumlah bahan kimia yang diinginkan.

Cara lain yang dapat dilakukan untuk menuangkan bahan kimia berbentuk padat adalah dengan memindahkan secara langsung  Cara ini diawali dengan membuka tutup botol dan memiringkannya ke arah wadah penampung. Guncang atau ketuk secara perlahan hingga bahan kimia di dalamnya jatuh ke wadah penampung sesuai jumlah yang diinginkan

  • Mengambil dan menuangkan bahan cair

Cara menuangkan bahan kimia berbentuk cair agak berbeda dengan bahan kimia berbentuk padat.  Bacalah terlebih dahulu label yang melekat dalam botol secara teliti untuk mencegah kesalahan. Peganglah botol sedemikian rupa sehingga bagian label terletak pada telapak tangan.  Miringkan botol untuk membasahi tutupnya dengan bahan kimia di dalam botol.  Hal ini dimaksudkan untuk memudahkan membukanya.

Bukalah tutup botol dengan cara menjepitnya diantara jari.  Tuangkan bahan kimia cair dengan bantuan batang pengaduk.  Bila akan menuangkan ke dalam gelas ukur, bahan kimia dapat langsung dituangkan ke dalam gelas ukur tersebut atau ditampung terlebih dahulu ke dalam dalam gelas kimia.  Selanjutnya barulah bahan kimia tersebut dituangkan ke dalam gelas ukur.

Dalam menuangkan bahan kimia dari botol harus diperhatikan ukuran mulut botol dengan ukuran wadah penampung.  Ukuran mulut botol harus lebih kecil daripada ukuran mulut wadah penampung.

Untuk menuangkan bahan yang mudah berubah, seperti misalnya media agar untuk menumbuhkan mikroba.  Penuangan dilakukan dengan cara seperti telah dijelaskan di atas namun dilakukan pada suhu yang tepat dimana tidak terlalu panas dan tidak terlalu dingin.  Bila penuangan dilakukan saat media agar masih panas dikhawatirkan dapat membunuh.mikroba yang akan ditumbuhkan.  Namun bila terlalu ’dingin’, dikhawatirkan media sudah membeku sehingga sulit dituangkan.

  • Menimbang

Menimbang merupakan kegiatan di laboratorium yang memiliki peran penting dalam menghasilkan data akurat.  Kegiatan menimbang harus dilakukan secara cermat dan hati-hati untuk meminimalkan kesalahan.

Neraca sangat tergantung dari kapasitas dan tingkat ketelitiannya.  Neraca yang kapasitasnya besar biasanya kurang teliti sehingga biasa disebut neraca kasar, sedangkan neraca yang kapasitasnya kecil memiliki ketelitian lebih baik sehingga biasa disebut neraca halus (neraca analitik). Berdasarkan prinsip kerjanya neraca terbagi menjadi neraca mekanik dan digital.  Neraca digital lebih cepat kerjanya dan lebih teliti.

Langkah pertama yang harus dilakukan dalam kegiatan penimbangan adalah membersihkan neraca atau piring  neraca dari sisa bahan atau kotoran lainnya.

Setimbangkan (tera) neraca dengan cara menggeser skrup pengatur hingga jarum menunjukkan angka nol.  Untuk neraca digital, proses tera dilakukan dengan menekan tombol tera dan secara otomatis neraca digital akan menampilkan angka nol.

Timbang wadah bahan untuk mengetahui bobotnya.  Bobot dari bahan kimia dapat diketahui dengan cara mengurangkan bobot total dengan bobot wadah.  Bila menggunakan neraca digital, penentuan bobot wadah bahan tidak perlu dilakukan.  Simpan wadah bahan pada neraca digital, lalu tekan tombol tera.  Secara otomatis neraca digital akan menampilkan angka nol, yang berarti angka yang akan ditampilkan dalam proses penimbangan adalah bobot bahan kimia.

Masukan bahan kimia yang akan ditimbang sesuai prosedur penuangan bahan kimia.  Pasang beban timbangan sesuai dengan bobot bahan kimia yang diinginkan.  Lakukan penambahan atau pengurangan bahan kimia hingga diperoleh bobot yang diinginkan. Bila penimbangan telah selesai, kembalikan semua dalam posisi semula.  Bersihkan piring neraca atau permukaan neraca.  Naikkan penahan neraca agar piring neraca tidak bergoyang.  Matikan arus listrik bila menggunakan neraca digital.

  • Mengukur volume bahan cair

Volume bahan cair dapat diukur dengan menggunakan gelas ukur atau pipet ukur.  Untuk memperoleh hasil pengukuran yang akurat, gunakan gelas atau pipet ukur yang bersih sehingga tidak ada bahan cair yang tertinggal pada alat ukur tersebut.

Gelas atau pipet ukur yang digunakan harus disesuaikan dengan volume bahan cair yang akan ditentukan volumenya.  Bacalah secara teliti skala yang terdapat dalam alat pengukur.  Jangan sampai salah membaca skala, misalnya satuan terkecilnya ml, 0.1  ml atau µm.

Isaplah zat cair yang akan diukur volumenya sampai di atas garis batas.  Bila yang akan diukur adalah zat cair yang berbahaya, gunakan ball pipet.   Tutup ujung pipet dengan jari telunjuk, kemudian angkat.  Keringkan dahulu ujung pipet dengan menggunkan kertas saring.  Turunkan permukaan zat cair dengan cara membuka ujung telunjuk secara hatihati sampai tanda volume.  Masukan zat cair ke dalam tempat yang disediakan.

Isilah gelas ukur dengan bahan yang akan diukur volumenya.  Perhatikan permukaan zat cair yang diukur.  Bila permukaannya cekung dibaca pada permukaan bagian terbawah dan bila permukaannya cembung dibaca pada permukaan bagian paling atas.  Pembacaan skala harus lurus dengan mata.

  • Menyaring

Untuk menyaring suatu campuran dapat dilakukan dengan menggunakan kertas saring.  Ukuran kertas saring disesuaikan dengan ukuran partikel yang akan dipisahkan dari suatu campuran.  Bentuklah kertas saring sedemikian rupa sehingga sesuai dengan ukuran corong.  Penyobekan kertas saring di bagian yang dilipat dimaksudkan untuk memberikan udara sehingga proses penyaringan dapat berlangsung lancar.

Tempatkan kertas saring pada corong dan basahi kertas saring tersebut dengan air suling sehingga benar-benar melekat pada corong.  Pasang corong pada statif dan ujung bagian bawahnya dimasukan ke mulut dari wadah penampungan filtrat.

Tuangkan larutan yang akan disaring ke atas corong.  Proses penuangan dilakukan secara hatihati agar tidak ada larutan yang melebihi kertas saring.

  • Mensterilisasi

Sterilisasi adalah proses pemusnahan semua bentuk kehidupan.  Objek yang telah terbebas dari mikroba disebut steril.

Proses sterilisasi dapat dilakukan dengan menggunakan suhu panas, sinal ultra violet, sinar-X, atau dengan menggunakan senyawa kimia.  Sterilisasi suhu panas dapat berupa udara kering atau uap bertekaanan.

2.4  Metode Pengujian

Telah dijelaskan sebelumnya bahwa laboratorium pengujian adalah laboratorium yang melaksanakan pengujian, yaitu suatu kegiatan teknis yang terdiri atas penetapan, penentuan satu atau lebih sifat atau karakteristik dari suatu produk, bahan, peralatan, organisme, fenomena fisik, proses atau jasa, sesuai dengan prosedur yang telah ditetapkan. Dengan demikian laboratorium pengujian pangan adalah laboratorium yang melaksanakan pengujian pangan, yaitu suatu kegiatan penentuan sifat atau karakteristik bahan pangan dengan menggunakan prosedur yang telah ditetapkan.

Metode (prosedur) pengujian memiliki arti sangat penting dalam melaksanakan kegiatan pengujian. Sesuai dengan perkembangan, laboratorium harus menggunakan metode dan prosedur pengujian yang sesuai dengan standar, baik nasional maupun internasional. Metode dan prosedur tersebut meliputi metode : 1)  pengambilan sampel; 2)  penanganan sampel; (3)  transportasi sampel; (4)  penyimpanan sampel; (5)  preparasi sampel yang akan diuji; (6) pengukuran/analisis sifat atau karakteristik sampel (sehingga diperoleh data); (7) perkiraan ketidakpastian pengukuran; dan (8) teknik statistik untuk analisis data pengujian.

Semua metode dan prosedur yang diperlukan oleh laboratorium dalam melaksanakan tugasnya sebagai laboratorium pengujian hendaknya tersedia, baik berupa instruksi untuk penggunaan dan pengoperasian peralatan yang relevan, maupun penanganan serta preparasi contoh yang akan diuji. Laboratorium harus memiliki semua instruksi, standar, pedoman dan data referensi yang relevan untuk pekerjaan laboratorium. Semua instruksi, standar, pedoman dan data referensi yang relevan untuk pekerjaan laboratorium tersebut harus dipelihara kemutakhirannya serta tersedia dan mudah diakses oleh personel laboratorium.

Kadang terjadi penyimpangan dari hasil pengukuran yang diperoleh.  Penyimpangan terhadap metode pengujian boleh terjadi hanya jika penyimpangan tersebut dapat dibuktikan kebenarannya secara teknis, disahkan dan dapat diterima oleh pelanggan. Agar pengujian dapat dilakukan dengan benar serta memberikan hasil yang memuaskan dan dapat dipercaya, maka laboratorium harus menggunakan metode standar, baik secara internasional, regional atau nasional.

Namun karena suatu alasan, laboratorium dapat juga menggunakan metode bukan standar. Namun metode tersebut spesifikasinya harus telah diakui serta berisi informasi yang cukup dan ringkas tentang cara melaksanakan pengujian tersebut. Bila menggunakan metode standar, tidak perlu ditambah atau ditulis ulang sebagai prosedur internal, tetapi dapat digunakan langsung sesuai dalam bentuk aslinya. Pada penggunaan metode standar, mungkin saja diperlukan pengadaan dokumen tambahan untuk menjelaskan langkah-langkah opsional dalam rincian metode atau rincian tambahan.

Ada beberapa hal yang perlu diperhatikan dalam penggunaan metode analisis, antara lain : (1) semua metode pengujian harus didokumentasi dan divalidasi; (2) semua metode harus dipelihara kemutakhirannya dan tersedia untuk staf laboratorium yang membutuhkan; (3) personel yang bersangkutan harus dilatih dan dievaluasi kompetensinya; dan (4) metode tersebut harus terus dipelajari oleh staf laboratorium yang bersangkutan untuk meningkatkan keahliannya.

  • Pemilihan metode

Dalam melaksanakan perannya, laboratorium pengujian harus menggunakan metode pengujian, termasuk metode pengambilan sampel, dalam melaksanakan pengujian. Hal ini dilakukan untuk memenuhi keinginan pelanggan juga untuk memberi jaminan kesesuaian dengan hasil pengujian yang dilakukan.

Metode pengujian yang digunakan dalam kegiatan pengujian di laboratorium harus memiliki standar yang telah dipublikasi dan berlaku secara internasioanl, regional, nasional, atau minimal antara penjual dan pembeli.  Beberapa pembeli dari negara di Eropa memiliki standar kualitas sendiri yang berbeda dengan standar kualitas negara lain.  Hal ini tidak bertantangan dengan peraturan peraturan mengenai standarisasi yang berlaku secara internasional.

Metode standar tersebut haruslah edisi terbaru yang berlaku, kecuali bila metode tersebut sudah tidak sesuai lagi atau tidak mungkin untuk dilaksanakan. Apabila diperlukan, metode standar dapat dilengkapi dengan rincian tambahan untuk menjamin keteraturan dalam penerapannya. Apabila pelanggan tidak meminta secara khusus metode yang digunakan, laboratorium harus memilih/menyeleksi metode yang sesuai, misalnya:

  1. standar internasional, regional, atau nasional yang telah dipublikasi oleh badan standar internasional atau nasional, seperti: Standar Nasional Indonesia (SNI), Standar Australia, ISO, ASTM, AOAC, WHO, dan lain-lainnya;
  2. metode yang dikeluarkan/ dipublikasi oleh organisasi yang mempunyai reputasi, seperti yang dikembangkan oleh ilmuwan dan dipublikasi dalam jurnal ilmiah;
  3. metode yang tertera berasal dari buku teks atau jurnal yang relevan;
  4. metode yang dikeluarkan oleh pembuat peralatan (manual); atau
  5. metode yang telah dikembangkan atau diadopsi laboratorium dan telah divalidasi (biasanya digunakan untuk keperluan khusus di lingkungan laboratorium sendiri).

Dalam rangka melakukan pelayanan pengujian kepada pelanggan, seharusnya pelanggan diberi informasi tentang metode yang telah dipilih untuk pengujian tersebut. Tentu saja, laboratorium harus sudah mampu menggunakan/mengoperasikan metode standar secara baik. Jika ada perubahan metode standar yang digunakan, hendaklah dilakukan konfirmasi ulang ke pelanggan. Selain itu, laboratorium juga harus memberitahu pelanggan bila metode yang diajukan oleh pelanggan sudah tidak sesuai atau sudah kadaluwarsa.

  1. Prosedur Analisis

Perdagangan bebas menuntut standarisasi mutu yang berlaku secara internasional. Oleh karena itu, untuk dapat bersaing di pasar internasional, diperlukan standar yang berlaku secara nasional sebagai dasar penentuan mutu bahan pangan yang akan dipasarkan. Indonesia telah memiliki Standar Nasional Indonesia (SNI) yang mengacu ke standar sejenis yang berlaku secara internasional.Standar demikian harus menjadi acuan bagi semua laboratorium yang diberi kewenangan menerbitkan sertifikat mutu. Penerapan metode analisis membutuhkan sarana, peralatan dan sumberdaya manusia. Pengetahuan mengenai prosedur analisis bahan pangan, dari penerimaan sampel hingga penyerahan ke pemilik sampel, perlu terus ditingkatkan demi menghasilkan data analisis bahan pangan yang memenuhi standar internasional.

3.1  Penerimaan /Pengambilan Sampel

Sampel yang akan dianalisis di laboratorium dapat berasal dari dua sumber. Pertama, sampel yang dikirim oleh perseorangan atau lembaga untuk dianalisis di laboratorim. Sampel tersebut disiapkan oleh pemiliknya dan diserahkan ke laboratorium. Prosedur pengambilan sampel tidak diketahui dan demikian pula dengan keahlian orang yang

mengambil dan menyiapkan sampel. Kedua, sampel yang diambil oleh laboratorium untuk dianalisis. Sampel jenis kedua diambil berdasarkan prosedur yang standar. Petugas yang mengambil sampel memiliki kemampuan yang dibutuhkan dan dilengkapi dengan peralatan yang sesuai.

3.2  Penanganan Sampel

Sampel yang diterima maupun diperoleh sendiri segera ditangani dengan mencatatnya dalam buku penerimaan sampel. Selanjutnya sampel diberi label yang berisi informasi berkaitan dengan kondisi sampel. Bila tidak segera dianalisis, sampel disimpan pada suhu dan wadah yang sesuai. Sampel harus sudah dianalisis 3 jam kemudian.

 Pengujian Sampel

Ada beberapa tahapan yang harus dilalui dalam pengujian sampel, yaitu : a) preparasi sampel; b) penyiapan peralatan; c) penyiapan bahan kimia; d) pelaksanaan pengujian.

  • Preparasi sampel

Sampel yang akan dianalisis perlu disiapkan dengan baik. Penyiapan sampel tergantung dari bahan pangan yang akan dianalisis dan metode analisis yang akan digunakan. Sampel harus ditimbang terlebih dahulu untuk mengetahui bobotnya.

Bagi sampel berbentuk cair perlu ditentukan volumenya. Kadang-kadang, jumlah sampel harus dinyatakan dalam konsentrasi atau persentase. Sebaiknya satuan yang digunakan harus diupayakan sama.

Sampel yang telah ditimbang kemudian dihancurkan dengan menggunakan blender atau dilumatkan dengan menggunakan mortar. Penyiapan sampel bahan pangan berbentuk cair dapat dilakukan dengan penyaringan atau penguapan. Sampel yang akan digunakan untuk uji organoleptik perlu disediakan sedemikian rupa sehingga tidak menimbulkan bias. Sampel harus diberi kode tiga digit.

  • Penyiapan peralatan

Peralatan yang harus disiapkan tergantung dari jenis dan metode analisis yang digunakan. Peralatan yang diperlukan dapat berupa peralatan gelas, plastik, atau besi. Pastikan ukuran panjang atau volume peralayang yang digunakan sudah sesuai dengan kebutuhan analisis. Peralatan yang digunakan harus bersih. Beberapa prosedur analisis, seperti analisis susu, produk makanan, membutuhkan peralatan yang tidak hanya bersih tetapi juga steril.

Peralatan destilasi perlu diperiksa ulang, apakah sudah bersih dari sisa bahan kimia. Sebagai contoh, peralatan yang sudah digunakan untuk destilasi protein harus dicuci dengan akuades.Apabila destilat yang tertampung dapat merubah warna garam borat dari violet menjadi hijau, maka perlu dicuci kembali. Pada pengujian organoleptik dibutuhkan

peralatan berupa wadah tempat sampel, lembar penilaian, dan kadang bilik sampel.

  • Penyiapan Bahan Kimia

Bahan kimia yang dibutuhkan tergantung dari jenis dan metode analisis yang digunakan. Hindari penggunaan bahan kimia yang sudah kadaluarsa atau jumlahnya terbatas. Beberapa bahan kimia harus disiapkan secara langsung. Sedangkan beberapa bahan kimia perlu diperiksa apakah masih mampu melaksanakan reaksi. Berdasarkan fungsinya, bahan kimia dapat dibagi menjadi tiga jenis, yaitu larutan kimia, reagen kimia, dan indikator. Untuk pengujian mikrobiologis, perlu disiapkan media kaldu (broth) atau media agar untuk tempat tumbuhnya mikroba.

  • Pelaksanaan Pengujian

Sampel yang telah disiapkan secara baik dianalisis sesuai prosedur yang telah ditetapkan.

Pengujian bahan pangan dapat dilakukan secara fisik, kimiawi, biologis (mikrobiologis), dan organoleptik.

  • Pencatatan Hasil Analisis

Seluruh aktivitas yang dilakukan di laboratorium pengujian harus dicatat. Prosedur yang digunakan dan data hasil analisis dicatat dalam buku data. Tujuan utama pencatatan adalah agar mudah menelusuri kembali apabila diperlukan. Bila terdapat kejadian atau hal yang bersifat khusus, harus dicatat secara lengkap dan diberi keterangan. Kelemahan yang dijumpai selama pelaksanaan pengujian juga dicatat untuk dipertimbangkan perbaikannya. Data yang bersifat ekstrim juga harus dicatat, sehingga dapat dilaporkan.

3.3  Pelaporan Hasil Penelitian

Hasil analisis sampel dilaporkan kepada penanggungjawab atau pimpinan laboratorium. Bila ada kejadian khusus yang dialami harus dilaporkan guna diambil tindakan secara tepat. Data yang bersifat ekstrim juga harus segera dilaporkan kepada penanggungjawab / pimpinan sebelum kegiatan pelaksanaan pengujian dilanjutkan, sehingga penanggungjawab / pimpinan dapat mengambil tindakan untuk mengatasinya.

DAFTAR PUSTAKA

Afrianto, dkk. 20018. Pengawasan Mutu Bahan/Produk Pangan. Direktorat Pembinaan Sekolah Menengah Kejuruan : Jakarta


KARAKTERISTIK WHEY PROTEIN SUSU

KARAKTERISTIK WHEY PROTEIN SUSU INDUSTRI PANGAN

Posted by Widiantoko, R.K

Susu sapi merupakan bahan pangan kaya zat gizi, terutama protein. Protein susu sapi terdiri dari dua jenis, yaitu protein whey dan kasein dengan komposisi 20 dan 80 persen. Pada pembuatan beberapa produk pangan, misalnya keju dan mentega, dipisahkan antara protein whey dan kasein. Kasein dan Protein whey dipisahkan melalui pengasaman pada pH 4,5-4,8. Walaupun merupakan hasil samping, protein whey masih memiliki komponen gizi dan senyawa yang dapat memberikan peran tertentu dalam pembuatan produk-produk pangan.

A. Komposisi protein whey
Protein whey berbentuk cairan yang berwarna kehijauan, sehingga komponen terbesar pada protein whey adalah air. Protein whey masih mengandung 19,3% persen /w dari seluruh fraksi protein whey susu sapi, yang didominasi β-laktoglobulin. Protein whey juga mengandung garam mineral, laktosa, protein, dan lemak dalam jumlah sedikit seperti tercantum pada Tabel 1.

Protein whey tersusun dari beberapa jenis protein yaitu β -lactoglobulin, β -lactalbumin, bovine serum albumin peptides, immunoglobulins, lactoferrin, dan lactoperoxidas (Tabel 2). Diantara protein-protein tersebut, β-laktoglobulin dan β-laktalbumin bersifat globular dan memiliki peran paling penting terhadap sifat fungsional protein whey sehingga menentukan karakter produk pangan yang dihasilkan.

Tabel  Nilai gizi protein whey

Komponen Jumlah
Laktosa 4,5 – 5
Protein 0,6 – 0,8
Lemak 0,4 – 0,5
Garam mineral 8 – 10

Tabel  Komposisi protein whey

Jenis protein Kadar (g/l)
β laktoglobulin 3,2
α-laktalbumin 1,2
Serum albumin 0,3
Immunoglobulin 0,7
Laktoferin, lisosim dan laktoperoksidase 0,8

Komponen penting yang terdapat di dalam whey :

-β-laktoglobulin
β-lactoglobulin terdapat sekitar 50% dari kandungan whey total. Protein ini memiliki banyak gugus yang mengikat mineral, vitamin larut lemak, dan bertindak sebagai protein transpor untuk senyawa lipofilik seperti tokoferol dan vitamin A. Modifikasi β-laktoglobulin menghasilkan produk yang memiliki aktivitas antivirus yang kuat

-α-lactalbumin
α-lactalbumin terkandung sekitar 25% dari kandungan protein whey total. Protein ini memiliki profil asam amino yang sangat baik, yang kaya akan lisin, leusin, treonin, triptofan dan sistin. Fungsi biologis utama dikenal dari α-lactalbumin adalah untuk memodulasi sintesis laktosa dalam kelenjar susu. Penambahan protein ini adalah sangat dianjurkan dalam susu formula bayi dan produk pangan lainnya. Beberapa peneliti menyimpulkan bahwa α-lactalbumin efektif sebagai agen anti-kanker.

-Imunoglobulin
merupakan kelompok protein kompleks yang berkontribusi secara signifikan terhadap kandungan protein serta mempunyai fungsi imunologi yang sangat penting. Senyawa ini dapat memberikan perlindungan dari beberapa penyakit pada bayi dan memiliki peran dalam upaya pengendalian penyakit pada orang dewasa. Whey protein konsentrat dapat digunakan sebagai suplemen susu bubuk karena mengandung antibodi yang cukup untuk membunuh E. coli.

-Bovine serum albumin

Bovine serum albumin (BSA) memiliki profil asam amino esensial yang komplek. BSA dapat mengikat asam lemak bebas, dan jenis lemak. BSA sangat penting dalam mempertahankan fungsi lemak. Hal ini menjadi sangat penting terutama jika dikaitkan dengan proses oksidasi lemak. Dalam beberapa penelitian dilaporkan bahwa BSA mengurangi resiko kemungkinan seseorang mengidap berbagai penyakit, seperti diabetes dan kehilangan daya tahan tubuh.

– Laktoferin
Laktoferin adalah protein yang dapat mengikat besi dan memiliki kemampuan sebagai agen antimikroba. Sistem kerja antimikrobanya adalah dengan cara mengikat zat besi dalam mikroorganisme. Keunggulan laktoferin lainnya yaitu membantu penyebaran besi dalam darah, antijamur, antivirus, dan antikanker, mengikat racun, meningkatkan efek imunomodulasi, mempercepat penyembuhan luka, dan anti-inflamasi.

-Laktoperoksidase
Laktoperoksidase telah dikenal sebagai agen antimikroba alami dalam susu, air liur dan air mata. Sistem laktoperoksidase telah terbukti baik sebagai bakterisida dan bakteriostatik terhadap berbagai jenis mikroorganisme, dan tidak memiliki efek negatif. Dalam studi klinis di bidang kedokteran gigi, laktoperoksidase terbukti mengurangi akumulasi plak, gingivitis, dan karies dini.

-Glycomacropeptide
Glycomacropeptide (GMP) merupakan bagian dari glikosilasi caseinomacropeptide (CMP), banyak terdapat dalam whey manis yang terbentuk setelah koagulasi protein oleh rennin. Sifat-sifat biologis dan fisiologis yang telah dikaitkan dengan peranan GMP meliputi: penurunan sekresi lambung, gigi penghambatan karies dan plak gigi, mendorong pertumbuhan Bifidobacteria, kontrol phenylketunoria, dan dapat menekan nafsu makan.

B. Sifat fungsional protein whey
Sifat fungsional bahan pangan merupakan kemampuannya untuk menghasilkan sifat khas pada produk yang dihasilkan. Protein memiliki sifat fungsional tertentu jika diaplikasikan pada produk pangan, demikian juga protein whey. Di atas sudah dibahas bahwa protein whey tersusun atas beberapa jenis protein, dan diantaranya ada dua jenis yang dominan berperan terhadap sifat fungsionalnya. ?-laktoglobulin terutama berperan terhadap sifat pembentukan gel, sedangkan ?-laktalbumin merupakan pengemulsi yang baik.

Sifat fungsional protein whey berkaitan dengan sfat fisik, kimia dan struktur seperti ukuran, bentuk, komposisi asam amino serta rasio hidrofobik/hidrofilik. Proses pengolahan (homogenisasi, pemanasan, pembekuan), kondisi lingkungan (pH, suhu, kekuatan ionic) serta interaksi dengan komponen lain juga mempengaruhi sifat fungsional protein. Gambar 1 menunjukkan faktor-faktor yang mempengaruhi sifat fungsional protein whey.

Protein whey merupakan ingredien penting pada berbagai produk pangan misalnya olahan susu, daging dan rerotian karena sifat fungsional dan nilai gizinya yang khas. Berbagai proses pengolahan dapat mempengaruhi karakteristik protein whey sehingga memodifikasi struktur dan fungsionalitasnya, seperti kemampuan membentuk gel, buih dan sifat emulsinya. Sifat fungsional protein whey yang penting adalah kelarutan, viskositas, water holding capacity , pembentukan gel, emulsifikasi dan pembentukan buih ( foaming) seperti terlihat pada Tabel 3.

Tabel  Sifat fungsional protein whey

Sifat fungsional Peranan Aplikasi produk pangan
Water binding (hydration)
  • Hasil interaksi protein-air
  • Kemampuan protein whey dalam mengikat air meningkat dengan adanya denaturasi
Produk berbahan dasar daging, minuman, rerotian
Solubility (kelarutan)
  • Hasil interaksi protein-air
  • Protein whey dapat larut pada semua pH, kecuali jika terjadi denaturasi pada pH 5 maka tidak bersifat larut
Minuman
Gelation dan viscosity
  • Interaksi protein-protein menghasilkan pembentukan matriks dan gel
  • Viskositas tidak terlalu tinggi, kecuali mengalami denaturasi
Salad dressings, sup krim, setting cheeses, produk rerotian, gravies, olahan daging
Sifat emulsi Dapat membentuk emulsi dengan baik kecuali jika terjadi denaturasi pada pH 4-5 Sosis, sup krim, cake, salad dressing
Foaming/whipping
  • Memiliki overrun tinggi dan stabilitas buih baik
  • Sifat membentuk buih paling baik jika protein whey tidak terdenaturasi, dan tidak bersaing dengan emulsifier lain
Whipped toppings, chiffon cakes, desserts
Warna dan aroma
  • Protein whey berperan dalam reaksi pencoklatan dengan cara bereaksi dengan laktosa dan gula reduksi lain pada saat pemanasan sehingga membentuk warna coklat yang diinginkan pada produk pangan
  • Protein whey tidak memiliki rasa sehingga tidak memberikan flavor tertentu saat diaplikasikan ke produk
Permen (confectionery), rerotian, olahan susu

– Water binding dan solubility
Sifat protein whey dalam mengikat air cukup penting, karena semakin banyak jumlah air yang dapat diikat maka rendemen pengolahan akan semakin tinggi. Hal tersebut berkaitan dengan penurunan biaya produksi. Kapasitas pengikatan air whey protein tergantung pada sifat internal protein (komposisi dan konformasi asam amino) dan faktor lingkungan (pH, kekuatan ionic, suhu).

Kelarutan merupakan fungsi suhu, pH, keberadaan ion lain dan cara pelarutan. Bahan pangan umumnya meningkat kelarutannya dengan meningkatnya suhu, akan tetapi tidak demikian halnya dengan protein whey. Semakin tinggi suhu mengakibatkan terjadinya denaturasi yang akan menurunkan kelarutan.

Protein merupakan bahan pangan yang hanya sedikit larut bila berada pada titik isoelektrik, akan tetapi tidak demikian dengan protein whey. Protein whey dapat larut pada rentang pH yang luas, sehingga tepat apabila diaplikasikan pada produk minuman.

-Gelasi
Pembentukan gel dapat terjadi karena adanya panas, tekanan dan kation divalent. Gel protein whey terbentuk melalui dua tahap, yaitu tahap denaturasi protein dan pembentukan kembali jaringan dari molekul-molekul yang telah mengalami denaturasi. Sifat gel yang terbentuk dipengaruh konsentrasi, kecepatan pemanasan, tingkat denaturasi, kekuatan ionic dan adanya ion spesifik. Ion-ion spesifik seperti kalsium, natrium dan magnesium mempengaruhi pembentukan gel pada protein whey. Pada pH lebih dari 8, garam-garam klorida, terutama kalsium meningkatkan kecepatan pembentukan gel.

Ada dua jenis gel dari protein whey, yaitu gel yang terbentuk dengan adanya panas dan gel yang terbentuk pada suhu ruang. Jenis gel yang kedua disiapkan dengan cara memanaskan protein whey sampai mengalami agregasi, diikuti dengan pendinginan secara cepat pada suhu ruang. Gel akan terbentuk dengan adanya penambahan NaCl atau CaCl2 Kebanyakan gel protein terbentuk dengan adanya panas.

Gel protein whey dapat mengikat air dan zat gizi lain dalam jaringan. Kemampuan protein membentuk gel tergantung kapasitas pengikatan air, keberadaan lipid, garam dan gula. Pembentukan gel merupakan sifat fungsional yang penting dalam produk-produk roti, olahan susu, daging, surimi, dessert dan sour cream . Pada beberapa produk pangan, protein whey memberikan peran terhadap beberapa sifat fungsional yang sulit untuk didefinisikan mana yang paling penting.

-Emulsifier
Emulsi merupakan sistem yang terdiri dari dua fase cairan yang tidak saling melarutkan, dimana salah satu cairan terdispersi dalam bentuk globula-globula di dalam cairan lainnya. Cairan yang terpecah menjadi globula-globula dinamakan fase terdispersi, sedangkan cairan yang mengelilingi globula-globula disebut medium dispersi atau fase kontinu. Agar diperoleh fase terdispersi dan medium dispersi maka diperlukan emulsifier dan energi. Pada proses pembuatan emulsi dibutuhkan jenis emulsifier yang cocok dengan tujuan untuk memperoleh tipe emulsi yang diinginkan secara cepat dan ekonomis.

Protein whey punya peran penting sebagai emulsifier pada system pangan. Peran protein whey sebagai emulsifier ditentukan oleh konsentrasi protein, pH, kekuatan ionic, konsentrasi kalsium dan laktosa, proses pengolahan dan kondisi penyimpanan. Satu catatan penting adalah pada titik isoelektrik, protein whey membentuk emulsi yang tidak stabil, akan tetapi apabila sudah susu sudah mengalami pasteurisasi, sifat pengemulsinya tidak terpengaruh.

Peran protein whey sebagai pengemulsi kurang dibandingkan dengan kasein, akan tetapi protein whey banyak digunakan sebagai pengemulsi bahan yang memiliki berat molekul rendah. Contoh produk yang menggunakan protein whey sebagai pengemulsi adalah formula makanan bayi, minuman pengganti makan, sup dan saus.

-Foaming/whipping (kemampuan membentuk buih)
Kemampuan membentuk buih merupakan sifat protein whey yang dipengaruhi tegangan antarmuka air udara. Pemanasan protein whey pada suhu 55 sampai 60oC mengakibatkan molekul-molekulnya menyebar secara cepat pada permukaan, yang diikuti penyusunan kembali lapisan untuk memerangkap udara. Hal tersebut mengakibatkan terbentuknya buih pada produk. Terjadinya denaturasi sebagian protein whey mengakibatkan penyusunan kembali molekulmolekulnya sehingga membentuk struktur yang kaku dan meningkatkan viskositas. Pendinginan sampai dibawah 4oC menurunkan buih yang terbentuk yang diakibatkan pengaruh laktoglobulin.

Sifat membentuk buih pada protein whey terutama dipengaruhi tingkat denaturasinya. Protein whey yang tidak terdenaturasi memiliki sifat membentuk buih paling baik. Faktor lain yang mempengaruhi adalah konsentrasi ion kalsium, suhu, pH dan kadar lemak. Sifat membentuk buih protein whey memberikan peran penting pada produk rerotian dan confectionery creams .

-Memperbaiki flavor dan warna kecokelatan
Produk whey dengan kadar laktosa tinggi dan protein rendah bisa menjadi pilihan untuk tujuan ini. Misalnya dry sweet whey, whey permeate/ deproteinized whey/ DPS (dairy product solid), atau WPC34. Kandungan laktosanya yang tinggi menyebabkan reaksi Maillard (pencoklatan) meningkat. Selain itu, kemanisan dan kelembutan produk akhir juga meningkat. Whey juga membantu meminimalkan kehilangan flavor selama proses pemanggangan biscotti, rusk, savarine, dan cracker. Hal ini dikarenakan whey membuat flavor lebih tahan terhadap proses pemanggangan. Produk whey yang bisa menjadi pilihan antara lain sweet whey atau DPS. Selain itu, dry acid whey biasa digunakan untuk memberi cita rasa asam dan memperbaiki tekstur pada produk bakeri.

-Pengganti telur
Sebagai pengganti telur, WPC34 dapat digunakan pada produk cookie, misalnya viennese, chocolate chops, snickerdoodle, dan soft lemon cookies. Sedangkan WPC80 cocok untuk produk roti, cakes, cookie (jenis kering dan basah), dan muffin. Pemakaian whey ini dapat mengurangi biaya bahan baku, menyesuaikan tingkat kelembutan cookie, dan memberi tekstur yang stabil pada cookie dan biscotti. Sebelum mengganti telur dengan whey, ada beberapa hal yang perlu diperhatikan. Pada kue, protein telur berperan penting pada kualitas struktur, tekstur, dan rasa produk. Komposisi adonan kue juga khas dengan jumlah gula yang tinggi, bahkan melebihi jumlah terigu. Di sisi lain, gula dapat menghambat pembentukan gluten pada adonan. Selain itu, juga menyebabkan suhu terbentuknya gluten dan gelatinisasi pati meningkat. Di sinilah protein telur berperan penting. Pembentukan struktur protein telur terjadi pada suhu yang lebih rendah, sehingga telur dapat menjaga agar pembentukan crumb tetap optimal selama pemanggangan. Oleh karena itu, sebaiknya tidak semua bagian telur digantikan dengan whey. Secara teknis, ada beberapa pertanyaan yang perlu dijawab sebelum menggunakan whey sebagai pengganti telur, yaitu:

  • Telur dalam bentuk produk apa yang diganti? Apakah bentuk bubuk atau telur segar?
  • Beberapa total kandungan protein dan air pada produk telur tersebut?
  • Apakah whey bisa memberi nilai tambah pada produk akhir?

Pertanyaan di atas perlu dijawab karena jumlah whey yang ditambahkan perlu dihitung berdasar jumlah kandungan protein dan air pada produk telur yang digunakan. Berat satu telur utuh besar sekitar 52-55 gram dan 75% nya adalah air. Sementara itu, kandungan protein telur segar sebesar 12%, sedangkan telur dalam bentuk bubuk sebesar 46%. Kandungan protein pada produk whey pun bervariasi, mulai dari 11% pada sweet whey sampai 90% atau lebih pada WPI. Kemudian, pada telur segar, air untuk mengganti cairan telur harus ditambahkan bersamaan dengan whey.

-Memperbaiki nilai gizi
Kandungan protein whey dinilai lengkap karena mengandung semua asam amino esensial yang diperlukan tubuh. Whey protein concentrate (WPC) juga kaya kalsium dan mineral lainnya. Kombinasi WPC80 atau whey protein isolate (WPI) dengan gula alkohol dan pemanis buatan mampu menurunkan penggunaan ingridien sumber karbohidrat pada produk bakeri sehingga dapat dihasilkan produk rendah karbohidrat. Selain WPC, dairy product solid (DPS) juga dapat menjadi pengganti karbohidrat. DPS juga kaya akan mineral, seperti kalsium, fosfor, potasium, dan sodium. Kandungan sodium tersebut dapat mengurangi penggunaan garam pada formulasi. Di sisi lain, kandungan mineral lainnya dapat menjadikan DPS sebagai sumber mineral tambahan. Selain itu, penggunaan WPC34 pada kue, cookie, dan muffin bisa berfungsi sebagai imitasi lemak. Fungsi imitasi lemak ini berasal dari kemampuan WPC mengikat air. Adonan produk bakeri dengan WPC memerlukan jumlah air yang lebih banyak daripada adonan tanpa WPC. Hal ini disebabkan saat proses pemanggangan, polimer protein whey akan terbuka (unfold) akibat terdenaturasi oleh panas. Terbukanya struktur protein ini menyebabkan akses ke daerah pengikatan air (water binding) pada protein meningkat sehingga daya ikat air akan bertambah. Akibatnya jumlah air yang dapat diikat juga meningkat. Jumlah air yang meningkat ini mengkompensasi jumlah lemak yang berkurang sehingga produk akhir dengan kandungan lemak lebih rendah (reduced-fat) akibat penambahan WPC tetap akan memiliki tekstur yang lembut mirip dengan adonan fullfat. Penambahan WPC ini bisa mengurangi penggunaan lemak hingga 50%. Produk whey juga bisa digunakan untuk tujuan fortifikasi protein yang umumnya digunakan pada produk olahraga dan kesehatan. Misalnya penggunaan WPC80 atau WPI pada tortilla, pizza crust, cookies, dan roti. Whey protein kaya akan asam amino rantai cabang atau branched-chain amino acids (26 mg leusin, isoleusin, dan valin per 100 gram WPC) yang dapat menyumbang 10-15% total energi yang dibutuhkan untuk olahraga berat (endurance exercise) (Chandan & Kilara 2011). Lebih lanjut, selama proses pencernaan WPC juga menghasilkan peptide bioaktif yang diketahui berperan menurunkan tekanan darah, memperbaiki imunitas, dan melawan virus dan jenis infeksi lainnya (Chandan & Kirala 2011).

-Penggunaan pada artisan bread
Penggunaan WPC34 pada artisan bread membuat penanganan (handling) adonan menjadi lebih mudah (relaxed machineability), menghasilkan crumb yang lebih lembut, warna coklat keemasan yang lebih menarik, dan cita rasa yang lebih kuat. Selain itu, juga dapat memperbaiki nilai gizi dan memperpanjang masa simpan produk. Selama proses fermentasi, laktosa pada produk whey tidak tercerna oleh khamir sehingga proses pencoklatan bisa lebih optimal dan aroma yang dihasilkan juga lebih baik. Jumlah WPC34 yang direkomendasikan berkisar 1-4% (basis tepung terigu). WPC80 atau WPC50 juga dapat digunakan dengan kisaran kurang dari 5%.

-Penggunaan pada produk whole grains
Tantangan pemakaian tepung gandum utuh untuk produk bakeri adalah rendahnya kandungan gluten. Padahal gluten merupakan pembentuk struktur adonan yang lentur dan elastis. Tanpa gluten, sifat tersebut tidak akan terbentuk. Penambahan produk whey bisa menggantikan rendahnya kandungan gluten karena whey mengandung protein yang juga memiliki sifat fungsional seperti gluten.
Selain itu, kandungan serat terlarut (soluble fiber) yang tinggi pada tepung whole grains dapat menyebabkan adonan menjadi lengket (gummy). Artinya, adonan tersebut bersifat machineability yang rendah atau sulit ditangani. Penambahan WPC pada adonan tepung whole grains dapat mengurangi kelengketan melalui daya ikat air whey yang baik.

C. Jenis-jenis protein whey
Protein whey memiliki nilai gizi dan fungsional yang baik, sehingga menarik untuk dikembangkan mulai akhir tahun 1980-an. Komposisi protein whey bervariasi, dan di pasaran dikembangkan beberapa jenis produk yang dapat diaplikasikan pada produk pangan.

Produk

Kandungan (%)

Air

Lemak

Protein

Laktosa

Abu

Dry sweet whey 4.5 1.1 12.9 73.5 8.0
Reduced lactoce whey 4.0 2.5 22.0 55.0 16.5
Demineralized whey 4.0 2.2 13.0 76.8 4.0
Dry acid whey 4.3 1.0 12.3 71.3 11.1
WPC34 3.5 4.0 34.5 51.0 7.0
WPC50 3.5 4.0 50.5 36.0 6.0
WPC80 3.5 6.0 80.5 5.0 5.0
WPI 3.5 0.5 93.0 1.0 2.0

Berdasarkan kadar proteinnya, beberapa produk dari protein whey adalah bubuk, isolate protein whey ( whey protein isolate /WPI), hidrolisat ( whey protein hidroysate / WPH), konsentrat (whey protein consentrate/WPC), ekstrak laktoglobulin dan laktalbumin dan diaplikasikan pada berbagai produk pangan. Produk-produk olahan protein whey tersebut memiliki sifat yang berbeda karena diperoleh dari teknik pengolahan yang berbeda. Diantara produkproduk tersebut, yang paling banyak digunakan adalah WPC, WPI dan WPH.

Whey powder diperoleh dengan memanfaatkan hasil pemisahan dalam proses pembuatan keju secara langsung. Whey dipisahkan dari lemak, dipasteurisasi, kemudian langsung dikeringkan sehingga diperoleh whey dalam bentuk bubuk. Seringkali, whey powder dikurangi, sehingga menghasilkan demineralized whey.

WPC merupakan produk dari protein whey yang sudah dikurangi air, mineral dan laktosanya. Proses pembuatan WPC dari protein whey menggunakan teknik separasi seperti diafiltasi, ultrafiltrasi, electrodialysis dan ionexchange. WPC memiliki kadar protein bervariasi, mulai 35 sampai 80 persen, dan masih mengandung karbohidrat dan lemak. WPC dapat digunakan dalam bentuk cair, bubuk dan konsentrat. WPC yang memiliki kadar protein 35 persen pada umumnya digunakan sebagai pengganti susu skim, baik sebagai penstabil maupun pengganti lemak. WPC tersebut memiliki peran untuk mengikat air, memberikan rasa mirip lemak dan memiliki sifat lembut seperti gelatin. Produkproduk yang menggunakan WPC misalnya yoghurt, produk bakery, makanan bayi dan permen.

WPC yang memiliki kadar protein 50, 65 atau 80 persen digunakan pada produk yang memerlukan kelarutan pada rentang pH yang las. Contoh produk tersebut adalah minuman berenergi, sup krim, produk bakery, olahan daging, produk pangan rendah lemak dan minuman yang difortifikasi protein.

WPC dalam bentuk bubuk memiliki kadar protein 80 sampai 85 persen. Bahan ini baik digunakan sebagai pengganti putih telur pada produk meringue, es krim dan topping karena bersifat ekonomis. Whey protein concentrate diproses menggunakan teknologi ultrafiltrasi untuk menyaring dan memekatkan whey hasil pemisahan dari kasein. Dalam proses tersebut, molekul-molekul berukuran besar seperti laktosa dan abu akan tereleminasi. Akibatnya, akan diperoleh konsentrasi protein yang lebih tinggi, yakni antara 25-89%, tapi umumnya adalah 80%. Ada beberapa jenis WPC yang digolongkan berdasarkan kandungan proteinnya. Misalnya WPC34 yang artinya kandungan protein berkisar 34%, WPC50 kandungan proteinnya sekitar 50%, dan WPC80 yang kandungan proteinnya berkisar 80%.

Diantara produk protein whey, WPI memiliki kadar protein paling tinggi yaitu 95 persen dan sifat fungsionalnya lebih baik dibandingkan WPC karena kadar lemak, laktosa dan garam lebih rendah, namun harganya lebih mahal dibandingkan yang lain.  Proses yang digunakan biasanya melibatkan teknologi mikro filtrasi dan ion exchange. Sehingga akan lebih banyak komponen non protein yang tereleminasi.

Referensi
De Wit. 1998. Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci. 81 (3): 597-608.

Kresic, G., Lelas, V., Rezek Jambrak, A., Herceg, Z., and Rimac, B.S. 2008. Influence of novel food processing techologies on the rheological and thermophysical properties of whey proteins. Journal of Food Engineering. 87: 64-73. 

Snezana, J., M. Bara?, and O. Ma?ej. 2005. Whey proteins. properties and possibility of application. Mljekarstvo 55 (3) 215-233

Geiser, Marjorie.-. The Wonders of Whey Protein. NSCA’s Performance Training Journal.

Johnson. 2000. US Whey Products in Snacks and Seasoning. US Dairy Export Council USA.

Keaton, Jimmy. 1999. Whey Protein and Lactose Products in Processed Meats. US Dairy  Export Council USA.

Chandan, R.C., and Kilara, A. 2011. Dairy ingredients for food processing. Iowa, US: Blackwell publishing.

Fungsi & Tugas PPIC ( Production Planning Inventory Control )

Fungsi PPIC ( Production Planning Inventory Control )


Pendahuluan

Fungsi Planning dalam perusahaan (manufacture) dijalankan oleh bagian PPIC ( Production Planning and Inventory Control ). Disamping memiliki fungsi production planning, PPIC juga memiliki peranan dalam manajemen Inventory.

 

Inventory atau barang persediaan merupakan aset perusahaan yang berupa persediaan bahan baku/raw material, barang-barang sedang dalam proses produksi, dan barang-barang yang dimiliki untuk dijual. Karena  inventory disimpan di gudang, maka manajemen inventory  dan gudang sangat berkaitan. Pergudangan sendiri adalah kesatuan komponen didalam Suplay Chain  product. Gudang berfungsi sebagai tempat penyimpanan barang ya, sampai digunakan dalam proses produksi. Fungsi  penyimpanan ini sering disebut ruang persediaan, gudang bahan baku, dll. Perusahaan besar atau kecil, untuk pengadaan dan penyimpanan barang ini diperlukan biaya besar. Biaya penyimpanan ini setiap tahun umumnya mencapai sekitar 20 – 40% dari harga barang (Indrajit, R,E., Djokopranoto,R., Manajemen Persediaan, 2003, Gramedia, hal.3). Untuk itu diperlukan strategi atau manajemen inventory yang baik agar biaya persediaan optimum.

 

Dalam Struktur Organisasi  ada beberapa variasi untuk  mempertegas fungsi Planning dan Gudang (material ware house dan Final Product ware house), untuk  kondisi seperti ini, PPIC bertanggung jawab pada  Monitoring Persediaan ( Safety Stock, Mengeluarkan Bill of Material, akurasi data inventory, efektivitas sistem invormasi ).

 

Sedangkan aktivitas pergudangan, seperti; 1) Penerimaan, Penyimpanan, dan pengiriman raw material ke bagian processing, 2) Penerimaan, Penyimpanan, dan pengiriman final product ke Customer, 3) Mengoperasikan Sistem informasi, Umumnya dibawah kendali  Head Ware House setingkat Supervisor atau Manager, disesuaikan dengan Lingkup tanggung jawabnya.

 

Production Planning Control

Tugas umum dari PPIC adalah menerima order dari  bagian Penjualan ( Sales/marketing ) lalu memastikan order ini selesai dan dikirim ke customer pada waktu yang sudah disepakati. Simple bukan ?

 

Tidak sesimple definisinya, fungsi PPIC  berkaitan erat dengan fungsi Marketing, Purchasing, dan Produksi. Disamping itu Informasi mengenai level of raw material, Work In Process (WIP), Final Product, dan data stock opname   untuk bagian Finance terutama dalam pembuatan laporan keuangan perusahaan juga termasuk dalam tanggung jawab PPIC .Beberapa perusahaan memiliki gaya manajemen production planning yang tampak berbeda secara teknis, tapi secara umum fungsi ini tidak jauh berbeda. Situasi Market menuntut produsen mampu menerapkan strategi operasi yang paling tepat. Salah satu contohnya, untuk menekan biaya penyimpanan, customer menuntut produsen menerapkan model produksi make to order, dengan variasi item product yang tinggi dan pemesanan dalam quantity kecil. Faktor ini akan sangat mempengaruhi model system planning diperusahaan tersebut.

 

Saya mengajak anda untuk mendalami peran PPIC secara spesifik. Ada cerita yang dapat menjelaskan pola ini, Kami memiliki model produksi MTO, dengan market Jepang sebagai salah satu “potensial market” , pola order barang dari sisi Customer/Distributor Jepang sangat menarik. Saat barang datang di pelabuhan, kontainer langsung didistribusikan ke Customer mereka. Jadi produk kami tidak perlu dikeluarkan dari kontainer. Distributor ini sudah memasukkan jadwal kedatangan atau bongkar muat saat sampai di Pelabuhan disana, jadi mereka tidak memerlukan Gudang perantara untuk menyimpan. Tidak hanya ini, biasanya pola MTO ini diikuti oleh variasi product yang sangat tinggi dalam Lot-lot order yang kecil, yang dalam prakteknya akan membuat  aktivitas produksi menjadi lebih sulit dan berpotensi menaikkan cost.


Case seperti diatas menununjukkan begitu sulit bagi Manufacture untuk mengendalikan customer. Bermain di “ceruk” yang ketat, kita tidak boleh hanya berbicara function, tapi aspek-aspek lain yang dimiliki product akan menjadi nilai tambah, dalam memenangkan persaingan. Jika anda seorang praktisi PPIC yang familiar dengan proses Make To order (MTO), memiliki variasi item produk sangat tinggi, dan menerima oder dalam lot-lot kecil, model order seperti ini biasanya sangat merepotkan, terutama dalam tahap realisasi product. Entah ini kebetulan atau tidak, kondisi ini menjadi semacam bumerang bagi proses manufacturing secara keseluruhan. Salah satu problem internal terbesar manufacture kita yaitu fleksibilitas yang rendah, kemampuan bagian produksi dalam mengikuti strategi marketing kadang masih masih sangat kurang. Untuk itu PPIC bertanggung jawab dalam menentukan dan mengevaluasi sistem produksi, apakah harus dilakukan secara manual  atau menggunakan soft ware dalam mengelolanya, mutlak sistem ini ada dibawah tanggung jawab PPIC. Terkadang, lemahnya pemahaman dan kesadaran leader-leader produksi akan hal ini menyebabkan sering adanya konflik internal antara PPIC dan Produksi. Saya ibaratkan hubungan  PPIC dengan bagian produksi ibarat “Tom and Jerry”. Meskipun tidak menutup kemungkinan, dengan pertimbangan tertentu seperti fleksibilitas perubahan arah produksi, suplay material, dan distribusi data, antara PPIC dan Produksi berada dalam satu atap atau Divisi Operasional. Masing-masing dipimpin oleh Level Manager. Dari contoh case yang pernah saya temui dilapangan, model seperti ini memerlukan sosok Operasional Manager dengan leadership &  knowledge yang sangat kuat, jika tidak akan terjadi over lapping  Job, batas tanggung jawab yang tidak clear, dan yang paling bahaya yaitu konsesi-konsesi atau kesepakatan negatif  yang berpengaruh pada mundurnya schedulle delivery dan konsumsi material yang relatif tinggi.


PPIC bukanlah robot, yang hanya menjalankan aktivitas sesuai prosedure yang berlaku. Tetapi secara Tim, PPIC berisi sekumpulan orang dengan qualifikasi dasar diantaranya, memiliki sifat pembelajar/learning people, memiliki analitycal skill, dan Sistematis. Jadi tidak hanya menjalankan sistem yang sudah ada, tetapi lebih pada memastikan sistem yang dijalankan efektif atau istilah saya “Rule Maker“.

 

Design Planning dan Inventory Control

Peran Sistem Informasi dalam aktivitas production planning sangat besar, begitu besarnya sampai saya berani jamin, tanpa bantuan software, aktivitas planning tidak akan optimal. Planning tidak hanya mengerjakan masalah perencanaan saja, tapi terkait dengan manajemen inventory. Otomatis Planning harus memiliki Link dengan Sistem Purchasing dan Ware house secara real time dan up date. Ini masih dalam scope inventory, belum termasuk aktivitas pengawasan proses produksi. Setiap perubahan dalam proses yang terkait dengan Penjadwalan ulang (reschedulling), Pembuatan ulang (Remake), Permintaan tambahan material, dll, pastinya akan mempengaruhi alokasi capasitas dan seluruh penjadwalan. Pertanyaannya, mungkinkah Ms. Excel melakukannya? Jika yang saya masuk sinkronisasi, yang saya tahu, jawabannya adalah “tidak mungkin”. Excel hanya bisa mengerjakannya secara terpisah dan sangat tergantung pada operator untuk melakukan rangkaian update. 

SAP for Manufacture

Untuk lebih jelasnya berikut  saya sampaikan lingkup kerja PPIC :

 

Registrasi  New Item dan Material

Setiap Item Product harus memiliki Item Code. Begitu pula Setiap material dan supporting material yang digunakan sekecil apapun harus tercoding. Ada dua  jenis material, pertama Raw material, yaitu seluruh material yang digunakan dalam proses pembentukan produk, dan kedua yaitu Supporting material, yaitu material pembantu, yang digunakan untuk melengkapi unit Final product, seperti plastic packaging, sticker, cartoon box, kertas label, dll.

Code untuk Regristasi ini berupa urutan numerik/angka. Kode numerik digunakan agar dapat terbaca oleh sistem. Dalam perkembangannya, untuk mempermudah  input data, kode angka dikonversi lagi kedalam barcode, sehingga proses input  menggunakan scanner. Selain untuk mempercepat  waktu iniput, proses scanning  menghasilkan data yang sangat akurat dengan tingkat human error sangat rendah.

Item-item baru biasanya didapat  dari bagian R&D, setelah melalui uji coba dan berhasil, setelah di verifikasi oleh Quality Control (QC), produk baru harus diregristasi oleh PPIC lengkap dengan  komponen penyusun dan formulasi  per unit produk ( Material Requirement Planning/MRP )

Logic Regristasi item

 

Pengelolaan Inventory atau barang persediaan

Barang persediaan terdiri dari : 1) Material dan Supporting Material, 2) Work In Process (WIP), dan 3) Final Product.

 

Material dan Supporting Material (M&SM). Ada dua hal yang  harus selalu diperhatikan untuk pengadaannya, yaitu; 1) M&SM  tanpa melihat order customer , 2) M&SM  berdasarkan order customer. Dengan pertimbangan minimalisir biaya pengadaan dan buffer, memiliki stock M&SM dalam batas optimum dengan beberapa metode peramalan memberikan jaminan akan kelancaran proses ( fluently production process ). Namun tidak  menutup kemungkinan adanya  emergency  order atau  order spesial sehingga menyebabkan keluarnya Bill of material (BOM) setelah kedatangan order customer atau setelah arrange order  ( master production schedulle/MPS )

 

Work In Process ( WIP ). Kondisi ideal, tahapan process dari satu station ke station lainnya berlangsung secara continue. Namun ada beberapa proses memerlukan pengelolaan khusus, akibatnya  produksi  terbagi kedalam beberapa divisi berdasarkan proses. Pergeseran barang ½ jadi terkadang tidak bisa sempurna  atau satu banding satu. Karena aspek kerumitan dan ongkos pengerjaan yang ekonomis, produk dari Divisi A yang menjadi bahan baku untuk proses di divisi B, terkadang  tidak  dibuat pas atau sesuai dengan order customer, mempertimbangkan aspek yang saya sebut sebelumnya, quantity yang diproduksi kadang berlebih. Inilah yang disebut WIP,  bagian PPIC bertanggung jawab penuh dalam mengendalikan  barang persediaan jenis ini. Peranan Sistem Informasi dan penerapan logic proses yang tepat dapat  menjamin pengendalian WIP. PPIC akan selalu dapat memantau  progress produksi di semua tahapan proses.

 

Final Product. Barang persediaan jenis ini relatif  lebih mudah dikendalikan, karena  posisinya sudah di tahap akhir, dengan manajemen ware house yang baik, pengendalian final product bisa dilakukan dengan baik. Poinnya, PPIC harus secara real time dan up to date dalam menerima informasi mengenai final product siap dikirim ke customer.

Logic Inventory

 

Planning  dan Monitoring  Proses Produksi

Mari memasuki intinya. PPIC menjadi  semacam Conection point dan Gate, antara dunia luar  dan Internal perusahaan dalam  konteks realisasi produk. PPIC harus memberikan informasi yang akurat mengenai proses internal ke Sales/Marketing, untuk diteruskan ke Customer. Sama dengan dikehidupan sehari-hari, misal kita di posisi customer, mau beli Gado-gado, kalo penjualnya lambat dan gak jelas kapan selesainya, setiap ditanya jawabannya tidak tahu atau berulangkali  sampaikan,”maaf saya cek dulu”, hampir tidak ada kepastian kapan selesainya dan berapa banyak yang bisa diselesaikan. Ini baru masalah gado-gado lho ya. Dalam sebuah industri, bisa saja final product perusahaan kita menjadi material bagi industri lainnya.  Misal Industri kancing dan resleting menjadi material bagi industri Garment.  Inilah salah satu konsep dari “customer satisfaction” .  Customer  tidak bisa melihat langsung ke dalam “dapur” anda, tapi  bagaimana  meresponse datangnya order, akan memberikan gambaran seberapa kuat kemampuan manufacturing perusahaan anda. Disinilah  vitalnya peranan PPIC dan Sistem Informasi  dalam proses planning dan monitoring .

Tahapan dalam planning dan monitoring proses produksi

 

Arrange Order

Ini  merupakan tahap awal dari planning, yaitu menerima order dari Sales. Order ini bisa berupa  direct order dari customer, atau  pembuatan stock untuk buffer saat peak season. Kombinasi Make To order (MTO) dan Make To Stock (MTS). Beberapa perusahaan menyebutnya Schedulling Rencana induk atau pembuatan Master Planning Schedule (MPS). Schedulling ini masih belum detail, masih bersifat global dan memiliki periode yang panjang 3 – 6 bulan. Data-data di MPS sangat penting untuk memberikan informasi ke bagian produksi untuk mempersiapkan resourcesnya, dan ke bagian purchasing  untuk mempersiapkan material.

 

Meski masih didalam scope PPIC, beberapa perusahaan yang sudah terintegrasi sistem informasinya, memberikan tugas input arrange order ke bagian sales. Lho koq bisa…. Inilah  keunggulan penerapan sistem informasi yang integral. Purchase  order dari Customer, langsung diinput oleh sales, dan “real time” langsung masuk kedalam  Master Planning Schedulle. Bayangkan  tinggal 1 klik saja, sistem sudah melakukan arrange order secara automatis. Bagaimana melakukannya ?

 

Konsep dasarnya sebagai berikut. Dasar dari konsep ini, yaitu menyerahkan pekerjaan reguler pada sistem. Karena logika manusia sulit untuk mengolah informasi yang begitu banyak dan dalam waktu singkat,  sistem menggunakan logika machine, meski masih di back up dengan proses manual operator. Ada beberapa parameter yang harus terpenuhi :

1.       Sistem memiliki data base mengenai sistem Grouping, yaitu menyatukan item produk yang melalui jalur proses yang sama, ibaratnya anda harus memiliki jalur seperti rel kereta api, untuk jelasnya saya sudah menulis  detail teknisnya dalam artikel di link ini : http://www.dedylondong.blogspot.com/2012/01/bagaimana-cara-menentukan-lead-time.html . Sebanyak apapun variasi produk yang anda miliki, produksi sudah terbagi kedalam line-line / jalur imaginer, yang dapat teridentifikasi oleh sistem.

2.       Informasi ( data base ) mengenai capasitas  setiap line produksi

3.       Informasi  ( data base ) mengenai lead time setiap line produksi

4.       Informasi  (data base )stock material

 

Dengan melihat sistem, PPIC secara manual dapat memperkirakan keamanan suplay material yang dieprlukan, dan segera membuka Purchase order jika dieprkirakan material tidak mencukupi. Input data Bill of material (BOM), memiliki  menu tersendiri, sehingga data base yang tersedia tidak hanya kondisi aktual stock real time, tetapi progressnya, mulai dari status : 1) purchase order (pembelian), 2) Arrive status ( tanggal kedatangan ). Informasi ini  progress ini sangat penting, karena sistem  hanya bisa melakukan alokasi order , jika status seluruh  component material  lokasinya sudah di factory.

Logic Arrange Order

 

Contoh Display Menu Arrange Order ( Ilustrasi Penulis )

 

Alokasi  & Monitoring Order

Setelah PO  Customer ter input kedalam database, secara real time sistem menginformasikan pada PPIC  estimasi schedulling dan status component material. Seperti yang saya sampaikan data dalam Arrange order masih sangat kasar dan belum bisa dibaca oleh bagian processing. Perusahaan yang terdiri dari  beberapa divisi-divisi yang saling tergantung  ( dependent) memiliki kode-kode Gruping yang berbeda-beda. Semakin mendekati proses akhir, pembagian grup/ Line ini semakin terpecah semakin banyak. Disinilah pentingnya PPIC memahami total alur proses realisasi produk.

 

Alokasi order bertujuan untuk membagi Item yang diorder kedalam tahapan-tahapan proses mulai awal sampai  delivery. Berbeda dengan arrange order, alokasi order biasanya memiliki periode schedulling yang lebih pendek, yaitu sekitar 2 – 4 minggu , kecuali jika suatu Line benar-benar mendapat  order yang kapasitasnya melebihi dari 30  hari ( tentunya ketentuan ini bervariasi disetiap perusahaan ). Tidak semua item dimulai dari proses awal, inilah pentingnya database WIP, beberapa komponen-komponen pendukung  reguler juga distock dalam batas optimal di masing-masing divisi. Sistem memberikan pergerakan barang persediaan diseluruh tahapan.

 

Istilah lain dari Alokasi Order yaitu Dispatching, aktivitas pengeluaran work order/perintah kerja pada bagian produksi terkait. Item-item produk yang  ter-alokasi berarti sudah memiliki  raw material yang complete. Yang perlu diperhatikan dalam  melakukan alokasi & Monitoring order :

1)      PPIC memastikan kesiapan capasitas produksi, biasanya untuk order-order dengan kapasitas yang melebihi, jika masih berada direntang capasitas produksi yang disepakati, dan sudah terinput ke dalam database, asumsi yang digunakan yaitu bagian produksi  setuju berapapun  jumlah order yang diturunkan selama tidak melebihi capasity. Sistem Line memberikan fleksibilitas tinggi. Anda pernah melewati jalur puncak-Bogor ? Anda pernah mendengar sistem Buka Tutup jalur ? Konsepnya seperti ini, dengan menerapkan sistem line, PPIC dapat menerapkan sistem buka-tutup, menambah kapasitas di line tertentu, dengan terlebih dahulu mengurangi atau bahkan menutup line lainnya, tentunya dengan terlebih dahulu berkoordinasi dengan produksi, terutama perihal capasitas mesin dan ketersediaan personel.

2)      Mengkomunikasikan ke bagian Sales, untuk diteruskan ke Customer, jika karena sesuatu hal, harus dilakukan schedule yang  berbeda, terutama jika terjadi percepatan dan perlambatan penyelesaian.

3)      Melakukan response yang cepat jika terjadi masalah yang menyebabkan keterlambatan, denan mengambil option re-Schedulling atau mengontrol Delay.

4)      Memastikan  order yang sudah ter-alokasi ( dalam sistem) ter-Print out agar bisa dikerjakan oleh bagian produksi. Ini sangat penting, karena  print out  Work order menjadi dasar bagi personel di lantai produksi. Untuk itu Work Order harus memberikan Informasi-informasi penting terkait : 1) Nama item product, 2) Component Material, 3) Code numeric atau Barcode, 4) Quantity, 5) Tanggal mulai produksi ( start date ) , 6) Tanggal target selesai ( Finish Date), 7) Info lain terkait dengan Spesifikasi produt  ( warna, dimensi, dll ), 8) No. Regristasi Customer Order, 9) No. Regristasi Work Order, 10) Identifikasi untuk mampu telusur proses. Konsep yang saya sampaikan ini biasa disebut dengan ” KANBAN” dibeberapa perusahaan Jepang. Tidak hanya informasi diatas, penerapan sistem Kanban menuntut adanya standarisasi tempat-tempat penyimpanan. Misal, product dalam sebuah Box berisi maksimal 400 pcs, jika order dari customer  untuk item ini totalnya 1000 pcs, maka Work Instruction   Sheet/Kartu kanban terpecah menjadi 3 sheet. Berturut-turut memiliki quantity 400, 400, 200 pcs/sheet. Dengan masing-masing sheet memiliki  No. Regrestasi sendiri  ( angka dan barcode), dalam prosesnya, Shet-sheet ini selalu mengikuti pergerakan produk. Sepintas memang terlihat boros kertas, tapi melihat akurasi dan kemudahan dalam processingnya, saya pikir masih jauh lebih besar manfaatnya. Saya rekomendasikan sistem ini untuk anda terapkan.

Kartu Kanban

 

5)      Melakukan  monitoring terhadap progress di setiap stasiun kerja (work station). Delay  di satu station akan mempengaruhi  ketepatan waktu station didepannya. Jika benar-benar ini terjadi, PPIC harus mengambil langkah-langkah untuk   melakukan koordinasi dengan bagian-bagian terkait untuk mendapatkan solusinya.

6)      System bersifat Close Loop atau siklus tertutup, untuk setiap Perintah kerja / Work Instruction, progress dan Resultnya harus dapat dimonitor  sehingga menjadi  informasi balik  yang akurat untuk seluruh bagian terkait ( glass wall management ), mulai dari Sales, PPIC, bagian Operation, dan Management.

Logic Alokasi Order

 

 

Display Menu Alokasi Order (Ilustrasi Penulis)

Penutup
Sepanjang karir saya dalam industri manufacture, PPIC merupakan bagian yang sangat unik.JIka melihat personel HRD, Finance, Produksi, Engineering, GA, Logistic, Continous Improvement (CI), dan QC, mereka ini memiliki basic knowledge yang bisa terpakai jika diterapkan di perusahaan yang bergerak dalam industri berbeda. Dengan tingkat adaptasi  relatif lebih mudah, orang-orang yang berada dalam spesialisasi yang saya sebut diatas tingkat  perputarannya relatif tinggi, apalagi bagian HRD bsia saya sebut luar biasa tinggi.

Berbeda kondisinya dengan PPIC ( dan R&D), basic knowledge tidak banyak membantu jika orang-orang ini berpindah kerja di indsutri dengan bidang dan model operasi yang berbeda. Tidak bisa ‘Copy Paste‘. Mereka seperti mulai dari awal dalam memahami total system yang berkaitan dengan  Produksi, Logistic, Marketing, bahkan Finance. Barangkali tiga fungsi yang saya sebut terakhir relatif mudah, namun system produksi memerlukan pemahaman yang sangat tinggi. Karena pengetahuan dan pemahaman terhadap keempat system ini merupakan basic knowledge saat memasuki perusahaan yang baru, ini saya asumsikan anda tidak memiliki masalah dalam komunikasi dan interpersonal saat masuk dalam organisasi perusahaan yang baru lho ya. melihat situasi ini, saya sangat maklum jika perpindahan orang PPIC ke perusahaan lain  biasanya berada dalam bidang yang sejenis atau mirip, akan lebih safe. Dan saya sangat kagum plus Salut bagi anda, yang berani keluar dan mencoba memasuki bidang industri yang berbeda.

Berikut 3 Tips dasar bagi   PPIC Leader ( Chief atau Manager level ) agar sukses dalam industri manufacture :

1. Memahami seluruh prosedure operasional terkait dengan produksi, inventory, logistic, marketing. Tidak hanya tekstual, tetapi kondisi actual wajib untuk dipahami. Knowledge ini akan sangat berguna dalam menganalisa permasalahan yang melibatkan beberapa bagian. Pemahaman mutlak akan prosedure  menjamin rasa hormat personel dari bagian lain.

 

2. Memahami proses produksi dengan aktual & detail. Jika anda berfikir, bisa memahaminya dengan hanya mempelajari flowchart, Instruksi kerja, SOP, dll. Ini masih sangat kurang, Pemahaman anda sebagai orang PPIC harus sama baiknya dengan  skill & knowledge  Supervisor dan Manager Produksi bahkan lebih baik, jika PPIC berperan sebagai ‘Rule Maker’ .  

 

3. Positioning yang jelas dan tepat. PPIC bukanlah perpanjangan tangan Produksi dan Marketing. Untuk itu dengan dilandasi dua poin diatas, PPIC harus berada di posisi yang proporsional, dengan fokus pada target utama, yaitu ketepatan Delivery dan Stabilitas Capasitas Produksi.

 

Saya sadar sepenuhnya artikel ini bukanlah sebuah manual book yang berisi ratusan halaman tentang detail alur proses, prosedure, sistem informasi, dll. Sulit bagi saya untuk mentransfer secara lengkap ke dalam format tulisan yang singkat ini. Karena setiap manufacture memiliki model production planning yang (sedikit) berbeda, maka artikel dapat berperan sebagai kondsep dasar dan cara berpikir. Tentunya masih banyak aspek yang bisa dikembangkan dalam mensupport manufacture dalam memenuhi kepuasan pelanggan dari sisi  realisasi product.

 

Akhir kata, ditengah berbagai kekurangan, semoga  artikel ini memberikan manfaat bagi rekan-rekan dalam membangun sistem Production Planning dan Inventory. Sehingga, untuk kedepannya, perusahaan anda memiliki grand desain sistem production planning dan inventory yang terintegrasi dengan sistem IT yang mudah dipahami, efektif, akurat, update dan mampu menyajikan informasi secara real time.

 

Terima kasih.

 

Sumber : http://dedylondong.blogspot.com/


SIFAT EMULSIFIKASI & PEMBUIHAN PROTEIN

Emulsifikasi
Air dan minyak selamanya tidak akan bisa menyatu. Jika kita hendak mencampurkan keduanya, maka dalam sekejap keduanya akan memisah kembali. Hal ini terjadi karena adanya perbedaan tingkat polaritas di antara dua zat tersebut. Air merupakan molekul yang memiliki gugus polar. Sedangkan minyak merupakan zat yang memiliki gugus non polar. Perbedaan ini menyebabkan keduanya tidak bisa menyatu, karena gugus polar hanya bisa bersatu dengan gugus polar, sedangkan gugus non polar hanya bisa bersatu dengan gugus non polar.
Protein memiliki gugus polar di satu sisi dan memiliki gugus non polar di sisi lain. Oleh karena itu ujung polar akan berikatan dengan air dan non polarnya berikatan dengan lemak. Maka terjadilah emulsi yang menyebabkan keduanya kelihatannya seperti bercampur.
Makanan atau minuman olahan yang terdiri dari lemak/minyak dan air secara bersamaan maka di dalamnya pasti ada bahan pengemulsi. Sebab jika tidak ditambahkan bahan tersebut maka akan terjadi pemisahan antara keduanya.
Emulsi adalah suatu sistem yang terdiri dari dua fase cairan yang tidak saling melarut, di mana salah satu cairan terdispersi dalam bentuk globula-globula di dalam cairan lainnya. Cairan yang terpecah menjadi globula-globula dinamakan fase terdispersi, sedangkan cairan yang mengelilingi globula-globula dinamakan fase kontinyu atau medium dispersi.
Aktivitas emulsi protein adalah kemampuan protein mengambil bagian dalam pembentukan emulsi dan dalam menstabilkan emulsi yang baru terbentuk. Kapasitas emulsi adalah kemampuan larutan atau suspensi protein untuk mengemulsikan minyak. Sedangkan stabilitas emulsi adalah kemampuan droplet emulsi untuk tetap terdispersi tanpa mengalami koalesens, flokulasi, dan creaming. Emulsi pangan dapat berupa oil in water (O/W) atau water in oil (W/O).
Protein merupakan surface active agents yang efektif karena memiliki kemampuan untuk menurunkan tegangan interfasial antara komponen hidrofobik dan hidrofilik pada bahan pangan. Untuk memproduksi emulsi yang stabil, harus dipilih protein yang larut, memiliki grup bermuatan, dan memiliki kemampuan untuk membentuk film kohesif yang kuat.
Berdasarkan mekanisme hidrofobisitas, protein ampifilik yang memiliki hidrofobisitas permukaan yang tinggi diadsorpsi pada permukaan minyak/air. Protein yang diadsorpsi ini menurunkan tegangan interfasial yang membantu terbentuknya emulsi. Protein dengan kandungan asam amino non polar yang tinggi (lebih dari 30% dari total asam amino) menunjukkan aktivitas emulsi dan daya buih yang tinggi, namun memiliki daya gel yang rendah.
Beberapa faktor yang mempengaruhi sifat emulsi protein, yaitu:
1. Konsentrasi protein: Stabilitas emulsi dipengaruhi oleh jumlah protein dalam preparasi
2. Nilai pH: Beberapa protein memiliki daya emulsi yang optimal pada titik isoelektriknya seperti putih telur dan gelatin, sementara beberapa memiliki daya emulsi yang optimal pada pH yang jauh dari titik isoelektrik seperti protein kacang dan kedelai.
3. Kekuatan ion: Adanya garam menurunkan potensial repulsi elektrostatik dan dapat menurunkan stabilitas emulsi.
4. Perlakuan panas: Suhu merupakan faktor kritis dalam pembentukan emulsi. Pemanasan menyebabkan peningkatan penampakan viskositas pada beberapa protein, yang mempengaruhi sifat emulsi dari protein ini.
Beberapa proses dapat menyebabkan ketidakstabilan emulsi. Ketidakstabilan emulsi ini disebabkan oleh agregasi, koalesens, flokulasi, dan creaming. Koalesen menyebabkan terjadinya peningkatan ukuran droplet dan volume fase serta perubahan viskositas. Flokulasi dan koagulasi disebabkan oleh fenomena ukuran droplet lemak. Interaksi antara droplet lemak ini menyebabkan terjadinya flokulasi. Creaming disebabkan karena adanya perbedaan densitas antara fase minyak dan air. Droplet dengan ukuran lebih kecil dari 0,5 mm tidak menyebabkan creaming, karena itu reduksi ukuran droplet dapat menurunkan kemungkinan terjadinya creaming.
Fungsi-fungsi pengemulsi pangan dapat dikelompokkan menjadi tiga golongan utama yaitu :
a. Untuk mengurangi tegangan permukaan pada permukaan minyak dan air, yang mendorong pembentukan emulsi dan pembentukan kesetimbangan fase antara minyak, air dan pengemulsi pada permukaan yang memantapkan antara emulsi.
b. Untuk sedikit mengubah sifat-sifat tekstur, awetan dan sifat-sifat reologi produk pangan, dengan pembentukan senyawa kompleks dengan komponen-komponen pati dan protein.
c. Untuk memperbaiki tekstur produk pangan yang bahan utamanya lemak dengan mengendalikan keadaan polimorf lemak.
Sistem kerja emulsifier berhubungan erat dengan tegangan permukaan antara kedua fase (tegangan interfasial). Selama emulsifikasi, emulsifier berfungsi menurunkan tegangan interfasial sehingga mempermudah pembentukan permukaan interfasial yang sangat luas. Bila tegangan interfasial turun sampai di bawah 10 dyne per cm, maka emulsi dapat dibentuk. Sedangkan bila tegangan interfasial mendekati nilai nol, maka emulsi akan terbentuk dengan spontan.
Berikut ini adalah contoh-contoh emulsifier yang umum digunakan dalam bahan pangan :
a.Mono dan Diglycerides, dikenal juga dengan istilah discrete substances.
b.Stearoyl Lactylates, merupakan hasil reaksi dari steric acid dan lactic acid, selanjutnya diubah ke dalam bentuk garam kalsium dan sodium. Bahan pengemulsi ini sering digunakan dalam produk-produk bakery.
Metoda pengukuran
1. Dengan pengenceran fase.
Setiap emulsi dapat diencerkan dengan fase externalnya. Dengan prinsip tersebut, emulsi tipe o/w dapat diencerkan dengan air sedangkan emulsi tipe w/o dapat diencerkan dengan minyak.
2. Dengan pengecatan/pemberian warna.
Zat warna akan tersebar rata dalam emulsi apabila zat tersebut larut dalam fase external dari emulsi tersebut. Misalnya (dilihat dibawah mikroskop)
– Emulsi + larutan Sudan III dapat memberi warna merah pada emulsi tipe w/o, karena sudan III larut dalam minyak
– Emulsi + larutan metilen blue dapat memberi warna biru pada emulsi tipe o/w karena metilen blue larut dalam air.
3. Dengan kertas saring.
Bila emulsi diteteskan pada kertas saring , kertas saring menjadi basah maka tipe emulsi o/w, dan bila timbul noda minyak pada kertas berarti emulsi tipe w/o.
4. Dengan konduktivitas listrik
Alat yang dipakai adalah kawat dan stop kontak, kawat dengan K ½ watt lampu neon ¼ watt semua dihubung- kan secara seri. Lampu neon akan menyala bila elektroda dicelupkan dalam cairan emulsi tipe o/w, dan akan mati dicelupkan pada emulsi tipe w/o

Foaming (Buih)
Buih dapat didefinisikan sebagai sistem dua fase yang mengandung udara, yang dipisahkan dengan lapisan kontinu yang tipis yang disebut fase lamellar. Buih protein pada permukaan merupakan sistem yang kompleks, mengandung campuran gas, cairan, padatan, dan surfaktan. Distribusi ukuran buih mempengaruhi penampakan tekstur produk. Protein yang banyak digunakan sebagai pembentuk buih adalah putih telur, gelatin, kasein, protein kedelai, protein susu, dan gluten. Protein pembentuk buih harus memiliki sifat-sifat berikut: dapat membentuk buih secara padat pada konsentrasi rendah, efektif pada kisaran pH yang luas, efektif pada media yang mengandung inhibitor buih seperti lemak, alkohol, atau substansi flavor.
Pembentukan buih terdiri dari 3 tahap yaitu: tahap protein globular berdifusi ke dalam permukaan udara-air dan menurunkan tegangan permukaan; tahap terbuka-nya lipatan protein pada permukaan; dan tahap interaksi polipeptida untuk membentuk film dengan denaturasi dan koagulasi parsial. Protein teradsorpsi pada permukaan dan membentuk film yang stabil mengelilingi buih dan membentuk buih.
Faktor-faktor yang mempengaruhi daya buih protein adalah sebagai berikut :
1. Nilai pH. Pada titik isoelektrik atraksi elektrostatik maksimum, viskositas dan rigiditas meningkat dan buih yang stabil terbentuk.
2. Konsentrasi protein. Buih yang dibentuk pada konsentrasi protein yang tinggi lebih tebal dan stabil karena adanya peningkatan ketebalan film interfasial.
3. Whipping aids. Whipping aids dapat ditambahkan pada protein untuk meningkatkan kapasitas buih menurunkan kerusakan protein akibat pengeringan dan pemanasan. Whipping aids komersial yang biasa digunakan adalah trietil sitrat dan gliseril triasetat. Etanol banyak digunakan sebagai whipping aids pada Industri bir. Sukrosa dengan konsentrasi 20% digunakan untuk melindungi putih telur selama pasteurisasi dan pengeringan. Penambahan NaCl mempengaruhi kapasitas buih protein karena garam mempengaruhi kelarutan, viskositas, unfolding, dan agregasi protein.
4. Inhibitor buih. Inhibitor buih merupakan substansi yang tidak larut air dan dapat menyebabkan rusaknya film protein. Lemak dalam jumlah yang rendah (0,1%) dapat menyebabkan rusaknya daya buih protein.

Metoda pengukuran daya buih dan stabilitas buih
Metoda Taylor dan Bigbe (1973) yaitu dengan cara menghitung penambahan volume melalui pengocokan dengan mixer pada kecepatan sedang kemudian diteruskan dengan kecepatan tinggi masing-masing selama 90 detik.
Metoda pengukuran stabilitas buih yaitu dengan menghitung perbandingan volume buih pada 30 menit dan 5 menit yang dihasilkan dengan melakukan pengocokan dengan menggunakan mixer pada kecepatan sedang kemudian dilanjutkan dengan kecepatan tinggi masing-masing selama 90 detik.

Penerapan modifikasi fungsional dari protein
Penerapan metode kimia dan enzimatis untuk memodifikasi sifat kimia dan fungsional dari protein makanan memiliki sejarah panjang dari penggunaan, modifikasi protein secara kimiawi dan enzimatis sering dilakukan untuk memperbaiki sifat-sifat fungsionalnya, yaitu kelarutan, kapasitas penyerapan air, sifat pengemulsian, dan pembuihan. Modifikasi secara kimiawi dapat dilakukan dengan cepat dan biaya rendah, namun berperah terhadap nilai gizinya. Sedangkan modifikasi secara enzimatis membutuhkan jenis enzim dan kondisi proses yang spesifik, meskipun pengaruhnya terhadap nilai gizi kecil. seperti digambarkan oleh modifikasi enzimatik protein susu untuk menghasilkan yogurt dan keju
a. Keju
Keju berasal dari protein susu (kasein) yang digumpalkan, kemudian dicetak. Penggumpalan kasein dapat terjadi akibat aktivitas enzim renin ataupun aktifitas bakteri asam laktat. Penambahan asam laktat ke dalam susu akan menyebabkan kasein menggumpal dan menimbulkan cita rasa serta aroma keju. Bakteri asam laktat yang biasa digunakan dalam proses pembuatan keju adalah Lactobacillus dan Streptococcus.
b. Yoghurt
Yoghurt merupakan minuman susu asam yang dibuat dengan cara menambahkan bakteri laktat, misalkan Strptococcus Thermophilus dan Lactobacillus bulgaricus ke dalam susu. Bakteri laktat berfungsi untuk mengumpulkan protein susu dan meningkatkan citarasa serta aroma yoghurt.
Pada pembuatan yoghurt, susu dipasteurisasi terlebih dahulu, kemudian sebagian besar lemaknya dibuang. Mikroorganisme yang digunakan adalah bakteri asam laktat L. bulgaricus atau S. thermophikus. Kedua bakteri tersebut ditambahkan pada susu dalam jumlah yang seimbang, lalu disimpan dalam suhu 45˚C selama lima jam. Dalam penyimpanan ini pH turun menjadi 5,5 akibat aktifitas bakteri asam laktat. Setelah proses ini, susu didinginkan dan dapat ditambahkan cita rasa buah jika diinginkan
c. Roti
Pembuatan roti memerlukan mikroorganisme Saccharomyces cerevisiae. Mikroorganisme tersebut akan memfermentasikan gula di dalam adonan menjadi CO dan alkohol sehingga adonan mengembang. Dalam proses ini, ragi tidak memecah tepung menjadi gula karena tidak menghasilkan enzim amilase. Selain untuk mengembangkan dan meberikan rasa saat dipanggang, uap CO hasil fermentasi ragi juga meninggalkan tekstur yang khas dan menyebabkan roti menjadi ringan
d. Mentega
Dalam pembuangan mentega, mikroorganisme yang digunakan adalah Streptococcus lactis dan Leuconostoc cremoris yang membantu proses pengasaman. Setelah itu, susu ditambahkan dengan cita rasa tertentu,kemudian lemak mentega dipisahkan. Pengadukan lemak mentega menghasilkan mentega yang siap makan.
e. Kecap
Pembuatan kecap memerlukan jamur Aspergillus oryzae. Jamur ini ditimbulkan dalam kulit gandum terlebih dahulu. Selanjutnya, jamur bersama-sama dengan bakteri asam laktat yang tumbuh pada kedelai yang sudah dimasak akan menghancurkan campuran gandum. Setelah melalui fermentasi karbohidrat yang cukup lama maka dihasilkan kecap

sumber :  http://haiyulfadhli.blogspot.com/2011/06/emulsifikasi-pangan.html