“Allahumma tawwi umurana fi ta’atika wa ta’ati rasulika waj’alna min ibadikas salihina”

INDUSTRI MINUMAN

SUSU KENTAL MANIS

SUSU KENTAL MANIS

1.Sejarah Susu Kental

Sweetened condensed milk atau lebih dikenal dalam bahasa Indonesia susu kental manis adalah produk hasil olahan susu yang sudah dikenal cukup lama setelah keju dan yoghurt. Susu Kental Manis (SKM) pertama kali diproduksi di Amerika pada abad ke-18, dan karena sifatnya yang tahan lama, pada saat itu banyak dipakai untuk konsumsi tentara Amerika yang sedang terlibat perang saudara. Pada saat itu susu kental manis diproduksi dengan cara mengevaporasi air dari susu segar secara vakum sebanyak 50% dari total kandungan air di dalam susu segar, kemudian ditambahkan gula sebanyak 45-50% sebagai pengawet.

Kandungan gula (sukrosa) yang tinggi di dalam SUSU KENTAL MANIS (rasio sukrosa dalam air, 62,5-64%) menjadikan SUSU KENTAL MANIS memiliki umur simpan yang lama, yaitu 12 bulan dalam kemasan tertutup. Karena umur simpan yang lama tersebut, dan penyimpanannya cukup di suhu ruang, SUSU KENTAL MANIS menjadi solusi produk olahan susu yang mudah didistribusikan di negara-negara tropis seperti Indonesia.

Industri susu kental manis modern pertama di Indonesia didirikan pada tahun 1967 yang memproduksi susu kental manis dengan teknologi rekombinasi (bukan dari susu segar). Teknologi rekombinasi sendiri secara pionir dikembangkan oleh peneliti-peneliti CSIRO (Commonwealth Scientific and Industrial Research Organization) di Australia sebagai solusi mengatasi produksi susu segar yang melimpah di negaranya, sementara di belahan dunia tropis terjadi kelangkaan bahan baku susu segar. Sejak tahun 1970-an, teknologi rekombinasi menjadi sangat populer di negara-negara Asia Tenggara seperti Indonesia, Malaysia, Filipina, Thailand, Srilangka, dan sebagainya untuk memproduksi segala macam jenis produk susu seperti susu kental manis, susu evaporasi, susu cair steril, bahkan susu bubuk. Selanjutnya teknologi rekombinasi merambah ke Timur Tengah dan sekarang ke daratan Cina.

Di negara asalnya, yaitu Amerika dan juga negara-negara maju lainnya, life cycle susu kental manis sudah dianggap pada tahap declining, artinya potensi pasarnya tidak berkembang bahkan cenderung turun. Sebagian kecil masyarakat masih mengkonsumsi susu kental manis sebagai dessert, tea sweetener atau coffee whitener. Hal ini karena susu kental manis dianggap rendah gizi dan terlalu banyak mengandung gula. Kondisi ini sangat berbeda dengan di Indonesia atau negara-negara berkembang lainnya yang sebagian besar masih mengkonsumsi susu kental manis sebagai minuman susu.

Pada tahun 1990-an pernah diprediksi bahwa pasar susu kental manis di Indonesia akan declining. Tapi sampai saat ini ternyata pasarnya terus tumbuh. Menurut survei yang dilakukan oleh Euromonitor pada Maret 2006, pasar susu di Indonesia masih menunjukkan kecenderungan meningkat sampai dengan tahun 2010, termasuk susu kental manis yang menunjukkan pertumbuhan 8-10% setiap tahun. Pertumbuhan pasar susu kental manis yang relatif stabil ini diduga karena masih rendahnya daya beli konsumen masyarakat Indonesia akan produk-produk susu. Sampai saat ini susu kental manis masih dianggap sebagai produk susu yang murah (Oktaviani, 2011).

2. Pengertian Susu Kental

Susu kental manis atau biasa disebut sweetened condensed milk adalah susu segar atau susu evaporasi yang telah dipekatkan dengan menguapkan sebagian airnya dan kemudian ditambahkan gula sebagai pengawet. Susu kental manis dapat ditambah lemak nabati dan vitamin. Susu kental manis dapat juga tidak dari susu segar atau susu evaporasi, yang disebut susu kental manis rekonstitusi. Susu kental manis rekonstitusi terbuat dari bahan-bahan seperti susu bubuk skim, air, gula, lemak, vitamin dan lain-lain, sehingga diperoleh susu dengan kekentalan tertentu (Wardana, 2012).

Badan Standardisasi Nasional menyatakan bahwa susu kental manis (SKM) adalah produk olahan susu berbentuk cairan kental yang diperoleh denganmenghilangkan atau menguapkan sebagian air dari susu segar atau hasil rekonstitusisusu bubuk berlemak penuh, atau hasil rekombinasi susu bubuk tanpa lemak denganlemak susu atau lemak nabati, yang telah ditambah gula, dengan atau tanpa penambahan bahan makanan lain dan bahan tambahan makanan lain yang diizinkan.Susu kental manis dapat diklasifikasikan menjadi dua macam, yaitu susu kentalmanis tanpa ganda rasa dan susu kental manis dengan ganda rasa (Machrus, 2012).

Badan Pengawas Obat dan Makanan mendefinisikan susu kentalmanis sebagai produk susu berbentuk cairan kental yang diperoleh denganmenghilangkan sebagian air dari campuran susu dan gula hingga mencapai tingkat kepekatan tertentu, atau merupakan hasil rekonstitusi susu bubukk dengan penambahan gula, dengan atau tampa penambahan bahan lain. Susu kental manis bukan produk steril, tetapi pengawetannya tergantung pada kandungan guanya yang tinggi. Ketersediaan air bebea yang rendah dan kandungan gula yang tinggi mencegah pertumbuhan mikroorganisme. Higiene pabrik yang ketat harus dijaga sehingga bakteri osmofilik tidak mengkontaminasi produk. Konsentrasi laktosa dalam susu kental manis di atas titik jenuhnya akan menyebabkan terjadinya kristalisasi. Kristalisasi ini harus dikontrol untuk menjamin bahwa Kristal yang terbentuk ukurannya sangat kecil. Jika kristalisasi tidak dikontrol, maka akan menyebabkan tekstur produk menjadi kasar atau dikenal dengan cacat produk (Machrus, 2012).

3. Karakteristik Susu Kental

Setelah mengalami evaporasi susu sapi yang semula berbentuk cair berubah menjadi cairan kental dengan sisa kadar air sebesar 55,35% – 64,89%. Susu evaporasi adalah susu yang sudah dikurangi kadar airnya dengan proses penguapan hampa hingga mencapai kepekatan tertentu dan sudah mengalami sterilisasi. Bentuknya cair, rasanya tawar dan warnanya tidak putih tapi cenderung coklat muda. Ada yang campuran dengan minyak nabati (filled milk). Biasanya digunakan sebagai pengganti krim kopi atau soup (Salim, 2013).

4. Kandungan Gizi Susu Kental

Susu Kental Manis adalah bahan makanan yang biasa dikonsumsi oleh masyarakat Indonesia.  Susu Kental Manis mengandung energi sebesar 336 kilokalori, protein 8,2 gram, karbohidrat 55 gram, lemak 10 gram, kalsium 275 miligram, fosfor 209 miligram, dan zat besi 0 miligram.  Selain itu di dalam Susu Kental Manis juga terkandung vitamin A sebanyak 510 IU, vitamin B1 0,05 miligram dan vitamin C 1 miligram.  Hasil tersebut didapat dari melakukan penelitian terhadap 100 gram Susu Kental Manis, dengan jumlah yang dapat dimakan sebanyak 100 %. Informasi Rinci Komposisi Kandungan Nutrisi/Gizi Pada Susu Kental Manis (Godam, 2012) adalah:

  • Banyaknya Susu Kental Manis yang diteliti (Food Weight) = 100 gr
  • Bagian Susu Kental Manis yang dapat dikonsumsi (Bdd / Food Edible) = 100 %
  • Jumlah Kandungan Energi Susu Kental Manis = 336 kkal
  • Jumlah Kandungan Protein Susu Kental Manis = 8,2 gr
  • Jumlah Kandungan Lemak Susu Kental Manis = 10 gr
  • Jumlah Kandungan Karbohidrat Susu Kental Manis = 55 gr
  • Jumlah Kandungan Kalsium Susu Kental Manis = 275 mg
  • Jumlah Kandungan Fosfor Susu Kental Manis = 209 mg
  • Jumlah Kandungan Zat Besi Susu Kental Manis = 0 mg
  • Jumlah Kandungan Vitamin A Susu Kental Manis = 510 IU
  • Jumlah Kandungan Vitamin B1 Susu Kental Manis = 0,05 mg
  • Jumlah Kandungan Vitamin C Susu Kental Manis = 1 mgl

5. Jenis – Jenis Susu Kental

Menurut Standar Nasional Indonesia (SNI) susu kental manis didefinisikan sebagai produk susu berbentuk cairan kental yang diperoleh dengan menghilangkan air dari campuran susu segar dan gula atau dengan rekonstitusi (pelarutan/pencampuran) susu bubuk dengan penambahan gula dengan atau tanpa penambahan bahan pangan lain dan bahan tambahan pangan yang diijinkan. Standar susu kental manis berdasarkan Codex Stan 282-1971 dan SNI Susu Kental Manis 2971-2011, harus mengandung protein minimal 6.5-9.52% dan kadar lemak minimal 8%. Dalam industri dikenal pembagian susu kental manis sebagai berikut.

a. Susu kental manis (Full Cream)

Susu kental manis jenis ini dibuat dari susu segar dengan penambahan gula dan dihilangkan sebagian airnya atau dapat juga dibuat dari campuran susu bubuk dengan gula dan bahan tambahan pangan lain yang diijinkan. Kadar lemaknya minimal 8% tanpa ada penambahan lemak atau minyak nabati. Kadar proteinnya yang lebih tinggi dari jenis yang lain (standar protein menurut SNI SUSU KENTAL MANIS, minimal 6.5%) membuat produk ini cocok dikonsumsi sebagai minuman susu. Varian rasa yang biasa ditemukan pada susu kental manis adalah plain (putih) dan cokelat.

b. Susu Kental Manis Lemak Nabati

Kini telah banyak tersedia dipasaran produk susu jenis ini. Susu kental manis lemak nabati dibuat dari susu segar yang ditambahkan gula, diganti sebagian lemaknya dengan lemak nabati yang kemudian dihilangkan sebagai airnya. Atau dapat juga dibuat dari campuran susu bubuk dengan gula dan diganti sebagian lemaknya dengan lemak nabati. Penggantian sebagian lemaknya dengan lemak nabati memungkinkan konsumen mendapat asupan lemak tidak jenuh dari lemak nabati yang baik bagi kesehatan.

c. Susu Skim Kental Manis

Produk susu jenis ini masih jarang beredar di pasar di Indonesia. Susu skim kental manis merupakan cairan kental yang dibuat dengan menghilangkan sebagian air dari susu skim yang telah ditambah gula hingga kepekatan tertentu. Kadar lemaknya sangat rendah. Kadar lemak yang dieprbolehkan untuk produk susu yang satu ini maksimal 1%, sangat rendah bila dibandingkan dengan jenis susu kental manis lainnya. Bagi konsumen yang ingin membatasi asupan lemak hariannya, produk ini dapat menjadi salah satu pilihan namun masih harang di Indonesia. 

d. Krimer Kental Manis

Produk lainnya yang serupa dengan SUSU KENTAL MANIS adalah Krimer Kental Manis (KKM). Berdasarkan kategori pangan BPOM No HK. 00.05.52.4040 Krimer Kental Manis merupakan cairan kental yang diperoleh dengan menghilangkan sebagian air dari campuran susu segar, gula, dan lemak nabati/minyak nabati atau dari hasil pelarutan campuran susu bubuk dengan penambahan gula dan lemak nabati. Tidak ada standar minimal protein dan lemak untuk krimer kental manis sehingga masih banyak kemungkinan inovasi yang dapat dimunculkan dari produk ini. Rasa krimer kental manis lebih beragam ketimbang produk susu kental manis. Kini dapat ditemukan di pasaran krimer kental manis dengan rasa keju.

6. Bahan Pembuatan Susu Kental Manis

Bahan Baku

Susu Segar

Susu segar merupakan cairan yang berasal dari ambing sapi sehat, yang diperoleh dengan cara pemerahan yang benar, yang kandungan alaminya tidak dikurangi atau ditambah apapun dan belum mendapat perlakuan apapun kecuali pendinginan (Badan Standardisasi Nasional, 2011 dalam Machrus, 2012).

Gula (Sukrosa)

Gula mempunyai fungsi memberikan rasa manis, meningkatkan viskositas, dan meningkatkan umur simpan dalam pembuatan susu kental manis. Gula mempunyai sifat higroskopis, sehingga mampu menyerap kandungan air pada produk susu kental manis. Sifat higroskopis yang dimiliki oleh gula mampu menghasilkan tekanan osmosis yang tinggi, sehingga menyebabkan terjadinya dehidrasi pada sel mikroorganisme. Sifat tersebut dapat menghambat tumbuhnya bakteri dan fermentasi pada produk susu kental manis (Machrus, 2012).

Skim Milk Powder

Skim milk powder atau susu bubuk skim yang digunakan dalam pembuatan susu kental manis berasal dari susu skim yang dikeringkan dengan spray dryer. Susu skim ini diperoleh melalui pemisahan skim dan krim dari susu segar dengan cream separator. Tujuan penggunaan susu bubuk skim adalah untuk menambah total padatan dalam produk susu kental manis. Skim milk powder digunakan sebagai sumber protein susu dengan kadar air maksimal 1% dan kadar lemak kurang dari 15% (Hidayah, 2010 dalam Machrus, 2012).

Air

Air merupakan bahan baku yang dapat digunakan sebagai pencampur dan pelarut bahan-bahan pada pembuatan susu kental manis. Air yang digunakan PT Frisian Flag Indonesia dalam pembuatan susu kental manis berasal dari sumur dan Perusahaan Air Minum (Hidayah, 2010 dalam Machrus, 2012).

Bahan Penunjang         

Penggunaan bahan penunjang dalam pembuatan susu kental manis adalah untuk menghasilkan produk susu kental manis dengan mutu baik, kandungan gizi yang cukup tinggi, dan lebih tahan lama. Bahan penunjang yang digunakan dalam pembuatan susu kental manis adalah anhydrous milk fat (AMF), buttermilk powder (BMP), palm oil, laktosa, vitamin dan cocoa powder (Sitaresmi, 2006 dalam Machrus, 2012).

Anhydrous milk fat diperoleh dengan cara memisahkan krim dan kelembaban susu melalui vacuum drying dan menghasilkan 70%-80% lemak susu. Anhydrous milk fat setidaknya mengandung 99,8% lemak susu dan tidak lebih dari 0,1% moisture (Chandan, 2008). Buttermilk powder merupakan produk yang dihasilkan dari pemisahan air dari buttermilk cair yang berasal dari churning mentega yang kemudian dikeringkan menjadi bentuk powder. Buttermilk mengandung lemak susu yang tidak kurang dari 4,5% dan kelembaban yang tidak lebih dari 5%. Buttermilk powder umumnya digunakan dalam produk olahan susu seperti es krim dan roti (Chandan, 2008 dalam Machrus, 2012).

Palm oil merupakan minyak yang berasal dari tumbuh-tumbuhan yang berfungsi sebagai sumber lemak. PT Frisian Flag Indonesia menggunakan palm oil dalam pembuatan susu kental manis cokelat untuk menambah kadar lemak produk (Hidayah, 2010). Laktosa adalah karbohidrat utama dalam susu dan konsentrasinya berkisar antara 4,2%-5% dalam susu. Kandungan laktosa umumnya menjadi rendah pada akhir laktasi dan susu yang berasal dari hewan yang terserang penyakit mastitis. Laktosa adalah disakarida dan terdiri α-D-glukosa dan β-D molekul. Laktosa merupakan gula pereduksi yang mengalami reaksi maillard dengan asam amino dalam susu yang mengakibatkan terjadinya warna kecoklatan saat susu dipanaskan. Laktosa mempunyai kelarutan dalam air hanya 17,8% pada temperatur 25 ⁰C (Kailasapathy, 2008 dalam Machrus, 2012).

Vitamin ditambahkan pada pembuatan susu kental manis dengan tujuan memperbaiki nilai nutrisi produk. Vitamin yang digunakan dalam pembuatan susu kental manis di PT Frisian Flag Indonesia antara lain vitamin A, D3 dan B1(Sitaresmi, 2006 dalam Machrus, 2012). Vitamin A dan D sebaiknya ditambahkan pada produk olahan susu karena vitamin A dan D bersifat larut dalam lemak. Penambahan vitamin harus dilakukan sangat hati-hati untuk memastikan pelanggan mendapatkan jumlah yang tepat dan tidak ada terjadi overdosis (Partridge, 2008 dalam Machrus, 2012). Cocoa powder berasal dari biji cocoa yang telah mengalami fermentasi, penyaringan dan proses lainnya. Cocoa powder digunakan sebagai flavor dan berpengaruh terhadap kadar total padatan terlarut pada pembuatan susu kental manis (Hidayah, 2010 dalam Machrus, 2012).

7. Proses Pembuatan Susu Kental

Pembuatan susu kental dimulai dengan pencampuran susu segar, susu bubuk, gula, air dan bahan tambahan lainnya. Bahan-bahan dicampurkan sampai tercampur sempurna, kemudian dilakukan penyaringan. Tahap selanjutnya adalah homogenisasi yang bertujuan untuk menghancurkan globula lemak, sehingga memiliki ukuran yang kecil dan seragam. Tekanan homogenisasi yang tepat perlu dioptimasi untuk menghasilkan dispersi lemak yang baik, tetapi juga cukup rendah untuk mencegah terjadinya resiko koagulasi karena kerusakan stabilitas protein. Pasteurisasi merupakan tahap setelah homogenisasi pada kisaran suhu 85-90 ⁰C. Tahap selanjutnya adalah vacuum cooling yang bertujuan menguapkan air yang terkandung dalam susu pada kondisi vacuum sehingga air dapat menguap pada suhu rendah. Tujuan proses pada kondisi vacuum adalah agar nutrisi yang terkandung pada produk susu dapat diminimalisir kerusakannya. Tahap selanjutnya adalah penyimpanan dan pengemasan (Saleh, 2004 dalam Machrus, 2012).

Secara rinci pembuatan susu kental adalah sebagai berikut:

  1. Susu yang diperoleh dari peternakan distandarisasi pada suatu perbandingan tetap dari lemak : benda padat bukan lemak yaitu 9 : 22 baik dengan ditambah krim maupun susu skim. Susu itu kemudian dihangatkan dahului dengan suhu pemanasan 65°C sampai 95°C selama 10 – 15 menit. Pemanasan pendahuluan ini penting, sebab hal ini akan menolong menstabilkan susu terhadap pengentalam selama penyimpanan produk jadi dan juga akan menghancurkan organisme patogen dan enzim tidak akan diinaktifkan pada prosedur penguapan susu selanjutnya. Sesudah pemanasan pendahuluan, ditambahkna gula sehingga diperoleh konsentrasi gula 62,5% sebagai sukrosa dalam produk akhir. Gula yang ditambahkan harus bebas dari mikroba patogen pencemar dan harus bebas dari gula invert, karena hali ini akan membantu terjadinya pengentalan selama penyimpanan seperti disebutkan terdahulu. Fungsi gula terutama adalah sebagai pengawet, karena sebagian besar mikroba ragi – ragi kecuali osmofilik tak dapat hidup pada konsentrasi gula 62,5%.
  2. Proses selanjutnya meliputi penguapan susu yang sudah mengandung gula dengan kondisi yang sangat ringan dengan menggunakan penguap hampa pada suhu 77°C. Pada suhu 49°C, fase cair dari produk yang dikentalkan menjadi jenuh dengan laktosa dan pada waktu susu kental itu didinginkan terjadi larutan jenuh dan kristalisasi. Jika tidak dilakukan dengan sangat hati – hati, akan terbentuk inti laktosa dalam jumlah sedikit dan ini akan tumbuh menjadi kristal berukuran makro yang cukup keras dan terasa kasar. Akibat kristalisasi laktosa ini adalah “rasa seperti pasir” yang dianggap dapat mengurangi mutu susu kental manis. Untuk menghindari hal ini harus diadakan pendinginan sedemikian rupa sehingga terjadi kristalisasi laktosa secara cepat dan dengan demikian terbentuk kristal –kristal kecil. Hal ini dijalankan dengan mendinginkan susu sampai suhu 30°C yang akan menghasilkan keadaan lewat jenuh dari laktosa dan kemudian dilakukan pembibitan dengan menambahkan laktosa yang berbentuk halus dengan jumlah 0,6 g/l susu kental. Kristalisasi akan selesai selama waktu 3 jam. Kristal – kristal yang sangat halus terdapat dalam susu kental yang bermutu tinggi biasanya berdiameter kira – kira 10 mikron dan krisatal –kristal ini begitu halus sehingga tidak dapat dirasakan oleh lidah.
  3. Bila proses kristalisasi telah selesai, susu kental didinginkan, dimasukkan dalam drum – drum penyimpanan dalam jumlah besar untuk diisikan ke dalam kaleng. Produk itu kemudian ditutup dan tidak memerlukan proses pemanasan lagi. Stabilitas mikrobiologis produk tersebut ditentukan oeh kandungan gula yang tinggi dan masalah kerusakkan biasanya terbatas pada pertumbuhan jenis ragi osmofilik (Buckle, 1987 dalam Amalia, 2012)

8. Perubahan pada Proses Pembuatan Susu Kental

1.      Kadar Air (Ka)

Kadar air adalah kandungan air yang masih tersisa dalam bahan pangan setelah mengalami proses penguapan. Pada umumnya kadar air bahan pangan cenderung menurun pada kurun waktu tertentu seiring bertambahnya suhu perlakuan, karena selama proses penguapan suhu yang lebih tinggi akan mempengaruhi kecepatan evaporasi sehingga kandungan air bahan teruapkan lebih banyak. Nilai kadar air susu evaporasi yang dihasilkan akibat perlakuan suhu evaporasi bekisar antara 55,35% – 64,89% bb dari kadar air bahan baku yang semula 88,52% – 89,34%. Pada suhu 50oC dihasilkan Ka sebesar 67,81%, ini merupakan Ka tertinggi selama perlakuan, Ka terendah diperoleh pada suhu 60oC. Kondisi demikian terjadi karena adanya pertambahan suhu perlakuan, dengan pertambahan suhu maka kecepatan evaporasi akan lebih cepat. Sehingga total padatan yang diperoleh bertambah bobotnya.

2.      Berat Jenis

Berat jenis adalah rasio dari densitas suatu bahan terhadap densitas standar (aquades) pada suhu dan tekanan standar. Berat jenis susu sapi segar adalah antara 1,01 – 1,02 sedangkan pada susu yang telah dievaporasi berat jenis susu akan meningkat. Pada suhu 60oC dan 50oC berat jenis susu evaporasi berturut-urut 1,09 dan 1,07. Besarnya pertambahan berat jenis bahan terjadi karena penambahan suhu dari 50oC menjadi 60oC yang menyebabkan kandungan air pada bahan diuapkan dan berubah menjadi kental atau berupa padatan yang akan meningkatkan densitas bahan sehingga berat jenisnya bertambah.

3.      Viskositas

Viskositas diartikan sebagai resistensi atau ketidakmauan suatu bahan untuk mengalir yang disebabkan karena adanya gesekan atau perlawanan suatu bahan terhadap deformasi atau perubahan bentuk apabila bahan tersebut dikenai gaya tertentu. Viskositas secara umum dapat juga diartikan sebagai suatu tendensi untuk melawan aliran cairan karena internal friction atau resistensi suatu bahan untuk mengalami deformasi bila bahan tersebut dikenai suatu gaya. Viskositas atau kekentalan merupakan suatu parameter penting pada proses evaporasi. Adanya penurunan Ka dan peningkatan suhu mengakibatkan  tingkat kekentalan susu evaporasi semakin bertambah. Tingkat viskositas susu sapi segar biasanya sebesar 6,3 cP, kekentalan akan semakin meningkat setelah susu diuapkan yaitu sebesar 28,6 cP pada 60oC dan 13,3 cP pada 50oC.

4.      Rendemen

Rendemen adalah besarnya prosentase bahan yang tertinggal. Rendemen akan meningkat apabila perlakuan diterapkan pada suhu rendah, sebaliknya pada suhu tinggi rendemen semakin berkurang. Hal ini karena semakin tinggi suhu penguapan maka laju penguapan juga meningkat. Perlakuan pada suhu 60oC menghasilkan rendemen sebesar 22,3% dan pada suhu 50oC rendemen yang dihasilkan meningkat menjadi 36,91%.

5.      Laju Penguapan

Laju penguapan merupakan jumlah air yang dapat diuapkan secara simultan oleh mesin penguap vakum dalam satu satuan waktu. Penguapan terjadi pada titik didih cairan. Apabila perbedaan suhu antara medium pemanas dengan cairan yang dipanaskan kecil maka kecepatan pindah panas akan menurun sehingga waktu yang dibutuhkan untuk mencapai titik didih cairan menjadi lebih lama yang menyebabkan laju penguapan berlangsung lebih lama. Laju penguapan tertinggi diperoleh pada perlakuan suhu 60oC karena semakin tinggi suhu maka laju penguapannya juga semakin cepat.

9. Kerusakan yang Terjadi Pada Susu

Selain memberikan efek yang positif, evaporasi juga menyebabkan beberapa kerusakan pada bahan pangan, diantaranya :

  1. Zat gizi yang terkandung dalam bahan menjadi rusak akibat proses pemanasan dan reaksi kerusakan selama masa simpan.
  2. Kerusakan Karbohidrat     : degradasi enzimatis, karamelisasi gula, dan pencoklatan non enzimatis.
  3. Kerusakan Protein       : degradasi enzimatis dan pencoklatan non enzimatis.
  4. Kerusakan Lemak       : hidrolisis lemak dan oksidasi lemak.
  5. Kerusakan Vitamin   : degradasi vitamin C, oksidasi vitamin C, dan karotenoid.
  6. Bahan menjadi kehilangan komponen volatil akibat proses dengan suhu tinggi.
  7. Kerusakan akibat aktivitas mikroorganisme.
  8. Kombinasi dengan metode pengawetan lain dapat meminimalkan kerusakan finished produk evaporasi.

10. Faktor – Faktor yang Mempengaruhi Pembuatan Susu Kental

Konsentrasi
Jika konsentrasi meningkat, larutan akan bersifat individual. Densitas dan viskositasnya meningkat bersamaan dengan kandungan zat padatnya, hingga larutan menjadi jenuh, atau jika tidak menjadi terlalu lamban sehingga tidak dapat melakukan perpindahan kalor secara memadai. Jika zat cair jenuh di panaskan terus menerus maka akan terjadi pembentukan kristal, dan kristal-kristal ini harus dipisahkan karena dapat menyebabkan tabung evaporator tersumbat. Titik didihpun semakin bertambah jika kandungan zat padat bertambah, sehingga suhu didih larutan jenuh mungkin jauh lebih tinggi dari titik didih air pada tekanan yang sama. 

Pembentukan busa

Beberapa bahan tertentu, terutama zat organik, membusa pada waktu di uapkan. Busa yang stabil akan ikut keluar evaporator bersama uap, dan menyebabkan banyaknya bahan yang terbawa ikut. Dalam hal ekstrim, keseluruhan massa zat cair itu mungkin meluap ke dalam saluran uap keluar dan terbuang.

Kepekaan terhadap suhu

Beberapa bahan kimia farmasi,dan bahan makanan dapat rusak bila di panaskan pada suhu sedang, selama waktu singkat saja. Dalam mengkonsentrasikan bahan-bahan seperti itu diperlukan teknis khusus untuk mengurangi suhu zat cair dan menurunkan waktu pemanasan.

Kerak

Beberapa larutan tertentu menyebabkan pembentukan kerak pada permukaan pemanasan. Hal ini menyebabkan koefisien menyeluruh makin lama makin berkurang sampai akhirnya kita terpaksa menghentikan operasi evaporator itu untuk membersihkannya. Bila kerak itu keras dan tidak dapat larut, maka perlu waktu yang lama dan biaya yang mahal untuk membersihkannya.

Bahan konstruksi

Kita perlu menentukan bahan konstruksi dari evaporator, bila mungkin evaporator di buat dari baja. Akan tetapi, banyak larutan yang merusak bahan-bahan besi, atau menjadi terkontaminasi oleh bahan itu. Karena itu digunakan bahan konstruksi khusus, seperti tembaga, nikel, bja tahan karat, aluminium, grafit tak tembus, dan timbal. Tetapi bahan-bahan ini relatif mahal, oleh karena itu laju perpindahan kalor harus cepat/ tinggi agar dapat menurunkan biaya pokok peralatan.

11. Pengemasan

Pengemasan merupakan salah satu pertimbangan yang paling kritis pada proses produksi. Fungsi utama pengemasan adalah untuk memuat, melindungi dan mempertahankan produk selama distribusi, penyimpanan dan penanganan. Pengemasan juga mempunyai fungsi lain yaitu untuk media komunikasi yang menunjukkan cara penggunaan produk dan kandungan nutrisi didalamnya. Makanan dikemas untuk menjaga kualitas, kesegaran, menarik konsumen dan untuk memfasilitasi penyimpanan dan distribusi. Perlindungan merupakan fungsi utama dari pengemasan makanan (Robertson, 2006 dalam Machrus, 2012).

Kemasan Sachet

Kemasan mempunyai peranan penting dalam pengawetan hasil peternakan. Kemasan dapat membantu mencegah atau mengurangi kerusakan, melindungi bahan pangan yang ada di dalamnya, melindungi dari bahaya pencemaran serta gangguan fisik (gesekan, benturan, dan getaran). Pengemasan juga berfungsi untuk menempatkan suatu hasil pengolahan atau produk industri agar mempunyai bentuk-bentuk yang memudahkan dalam penyimpanan, pengangkutan dan distribusi. Pembuatan kemasan juga berfungsi sebagai sumber informasi dan dibuat agar menarik perhatian konsumen. Kemasan dapat terdiri dari kemasan primer dan kemasan sekunder. Kemasan primer merupakan kemasan yang kontak langsung dengan produk. Kemasan sekunder yaitu kemasan merupakan karton luar atau multipacker yang memungkinkan konsumen untuk membawa lebih dari satu pcs produk pada suatu waktu (Brody, 2008 dalam Machrus, 2012).

Kemasan sachet merupakan suatu bentuk kemasan yang bersifat fleksibel yang terbuat dari Al foil, film plastik, selopan, film plastik berlapis logam aluminium (metalized film) dan kertas yang dibuat satu lapis atau lebih dengan atau tanpa bahan thermoplastic maupun bahan perekat lainnya sebagai pengikat ataupun pelapis konstruksi kemasan. Al foil dapat memberikan penghalang yang baik terhadap transmisi gas, uap air dan cahaya. Kemasan sachet digambarkan sebagai material yang tidak rigid atau kaku, dan biasanya merupakan material yang non fibrous dan memiliki ketebalan kurang dari 0,25 mm. Kemasan sachet memiliki beberapa karakteristik yaitu harga relatif murah, memiliki sifat penghalang yang baik terhadap uap air dan gas, dan dapat direkatkan dengan panas (Fellows, 2000 dalam Machrus, 2012).

Pemasaran kemasan ini menjadi populer untuk mengemas berbagai produk, baik padat maupun cair. Alasan menggunakan kemasan sachet sebagai bahan pengemas adalah mudah dibentuk, ekonomis, dapat digunakan sebagai pengganti kemasan kaleng, ringan, mudah dalam penanganannya dan tahan pada heat sealing dan heat resistance (Departemen Perindustrian, 2007 dalam Machrus, 2012).

Kerusakan Kemasan

Hidayah (2010) dalam Machrus (2012) menyatakan bahwa kerusakan kemasan merupakan suatu kejadian yang tidak diinginkan oleh perusahaan, seperti cacat, kerusakan dan kegagalan yang menyebabkan produk dibuang ataupun dikerjakan ulang. Persentase kerusakan kemasan yang tinggi dapat menyebabkan kerugian pada perusahaan. Beberapa hal yang yang menyebabkan terjadinya kerusakan atau kegagalan dalam proses produksi adalah kegagalan mesin, perubahan proses, kegagalan mutu, serta variasi sumber daya. Kerusakan pada produk dapat menyebabkan berbagai kerugian pada perusahaan, seperti kerugian waktu, biaya, sumber daya dan reputasi. Kerusakan pada produk dapat dikurangi dengan melakukan teknik perbaikan mutu dan mengendalikan kualitas (Deviyanti, 2008 dalam Machrus, 2012).

Hidayah (2010) dalam Machrus (2012) menyatakan bahwa faktor utama yang berpengaruh terhadap kerusakan kemasan produk susu kental manis sachet adalah mesin, manusia, material dan metode. Faktor mesin yang mempengaruhi antara lain spare parts, posisi dan ketajaman slitter, suhu sealer, sensor eyemark, posisi nozzle dan kestabilan arus listrik. Faktor manusia yang mempengaruhi adalah motivasi, kedisiplinan, keahlian, alokasi Sumber Daya Manusia (SDM) dan awareness. Faktor material yang mempengaruhi adalah kualitas bahan pengemas dan jenis bahan baku. Faktor metode yang mempengaruhi adalah jumlah dan frekuensi sampling, maintenance dan standarisasi.

Hidayah (2010) dalam Machrus (2012) menyatakan bahwa beberapa tipe kerusakan kemasan sachet yang sering terjadi pada proses pengemasan adalah berat kurang, pecah vertikal, rembes horisontal, pecah horisontal, Alluminium (Al) foil melintir, kemasan kosong dan tidak ada kode. Pecah dan rembes adalah tipe kerusakan yang terjadi setelah produk susu kental manis diberi perlakuan pressure test.

DAFTAR PUSTAKA

Amalia, G. 2012. Susu dan Turunannya. Skirips. http://repository.usu.ac.id/bitstream/ 123456789/34012/3/Chapter%20II.pdf. Diakses pada 17 Desember 2015, Makassar.

Godam. 2012. Kandungan Gizi Nutrisi Susu Kental Manis. http://www.organisasi.org/ 1970/01/isi-kandungan-gizi-susu-kental-manis-komposisi-nutrisi-bahan-makanan.html . Diakses pada 17 Desember 2015, Makassar.

Machrus, Syauqi, 2012. Susu Kental Manis. Skiripsi. https://www.academia.edu/4902447 /TINJAUAN_PUSTAKA. Diakses pada 17 Desember 2015, Makassar.

Nurila. 2013. Susu Kental Manis. https://www.scribd.com/doc/212212823/Makalah-Susu-Kental-Manis . Diakses pada tanggal 17 Desember 2015 pukul 21.30 WITA

Oktaviani, Lira. 2013. Perkembangan Industri Susu Kental Manis Indonesia.http://foodreview.biz/. Diakses pada tanggal 17 Desember 2015,       pukul 22.00 WITA.

Salim, Azhar. Susu Evaporasi. http://oemahazhar.blogspot.co.id/2013/12/susu-evaporasi.html?m=1. Diakses pada 17 Desember 2015, Makassar.

Saragih, Farida. 2012. Susu Kental Manis & Krimer Kental Manis. RD & Quality Management. PT. Indolakto. Foodreview Indonesia Vol. VII/No. 6/Juni 2012.

Wardana, Agung. 2012. Teknologi Pengolahan Susu. http://pangan.unisri.ac.id/wp-content/uploads/2012/11/BPK-Susu-2012.pdf. Diakses pada 17 Desember 2015, Makassar.

Iklan

MILK HOMOGENIZER

MILK HOMOGENIZER

Susu homogen adalah susu yang telah mengalami homogenisasi. Proses homogenisasi bertujuan untuk menyeragamkan besarnya globula-globula lemak susu. Di dalam susu yang belum dihogenisasi, globula-globula lemak ini besarnya tidak seragam yaitu 2 – 20 mikrometer. Alat untuk menyeragamkan globula-globula lemak tersebut disebut homogenizer.

Prinsip kerja homogenizer adalah susu ditekan melalui lubang kecil, kemudian setelah keluar akan menghantam suatu bidang atau dinding yang keras, maka globula-globula lemak yang berukuran besar akan pecah menjadi beberapa globula lemak yang kecil-kecil. Tekanan yang digunakan dalam proses homogenisasi ini adalah antara 2.000 – 4000 psi.

Ada beberapa macam tipe homogenizer yaitu :

1.      Single stage homogenizer, apabila penekanan susu dikerjakan hanya satu kali selama proses dalam satu alat. Biasa digunakan untuk homogenisasi:

– Produk dengan kandungan lemak rendah

– Produk yang memerlukan homogenisasi berat (heavy)

– Produk yang memerlukan viscositas tinggi

2.      Two stage homogenizer, apabila penekanan susu dikerjakan dua kali selama proses dalam satu alat. Biasa digunakan untuk:

– Produk dengan kandungan lemak tinggi

– Produk dengan kandungan bahan kering (konsentrasi susu) tinggi

– Produk dengan viscositas rendah.

3.      Multi stage homogenizer, apabila penekanan susu dikerjakan lebih dari dua kali selama proses dalam satu alat.

Ketidak seragaman ukuran globula lemak susu tidak dikehendaki di dalam pembuatan produk-produk olahan susu tertentu, karena hasilnya tidak akan terasa halus. Tetapi kerugian susu homogen adalah mudah mengalami creaming yaitu memisahnya kepala susu (krim) dibagian atas terpisah dari serum yang terletak dibagian bawah.

Homogenisasi merupakan sebuah proses atau beberapa proses yang digunakan untuk membuat campuran menjadi seragam. Homogenisasi bisa disebut juga dengan pencampuran beberapa zat yang terkait untuk membentuk suspensi atau emulsi. Homogenisasi dilakukan jika zat atau campuran bahan memiliki kandungan yang berukuran cukup besar sehingga tidak memungkinkan kondisi campuran seragam. Contoh zat yang paling sering dihomogenisasi adalah susu murni (raw milk), di mana kandungan yang berukuran cukup besar yang dimaksud adalah molekul lemak yang dapat terpisah dengan sendirinya (tersuspensi) dari susu ketika dibiarkan terlalu lama (membentuk krim). Sebagian besar para konsumen susu merupakan susu yang dihomogenisasi.

Homogenisasi adalah istilah yang digunakan oleh para ilmuwan makanan dan insinyur untuk menggambarkan berbagai proses termasuk ultrasonik, rotary, membran, pabrik koloid, dan valve homogenisasi, dan lainnya. Ambiguitas dalam penggunaan kata homogenisasi, bahwa setiap proses yang mengurangi heterogenitas dapat disebut homogenisasi. Salah satu alat dari homogenisasi ini adalah valve homogenizer. Salah satu jenis dari valve homogenizer, ada yang biasanya disebut sebagai valve homogenizer tekanan tinggi atau nama lainnya adalah dynamic homogenizer tekanan tinggi. Proses ini diterapkan untuk liquid dengan perangkat yang terdiri dari pompa pemindahan positif dan satu atau lebih stage yang dibuat oleh valve atau nozzle. Pompa pemindahan positif yaitu pompa yang bekerja menghisap zat cair, kemudian menekan  zat cair tersebut, selanjutnya zat cair dikeluarkan melalui valve atau lubang keluar. Pada pompa ini fluida yang dihisap sama dengan fluida yang dikeluarkan.

Gambar 1. Cara Kerja suatu sistem homogenisasi menggunakan valve

(Sumber: Anonim, 2011)

Kita bisa mendefinisikan valve homogenizer tekanan tinggi ini sebagai suatu alat yang memiliki proses homogenisasi dimana pompa mampu memberikan setidaknya 100 MPa tekanan hidrostatik untuk liquid sebelum pembatas aliran difungsikan, terlepas dari laju aliran. Teknologi homogenisasi terus berkembang dan mampu juga beroperasi pada tekanan yang rendah.

Jenis kedua dari valve homogenizer adalah valve homogenizer tekanan rendah. Jenis ini memiliki proses yaitu liquid bertekanan mengalir melalui suatu valve. Didalamnya ada peningkatan besar dalam kecepatan fluida disertai penurunan tekanan suatu fluida. Kecepatan fluida memulai turbulensi sangat intens dalam fluid jet lalu keluar dari valve dan menyebabkan turbulensi. Hal ini mengganggu fase terdispersi dan menghasilkan efek homogenisasi.

Valve homogenizer tekanan tinggi pada industri, pilot, atau skala laboratorium saat ini dilengkapi dengan pompa tipe plunger dan valve nozzle yang terbuat dari keramik tahan abrasif atau batu permata keras. Stabilitas tekanan dapat dicapai antara pompa dan valve atau penggunaan dua atau lebih piston reciprocating dan algoritma kontrol yang tumpang tindih. Dalam pengaturan valve misalnya Stansted Power Fluid, seat valve-nya berbentuk jarum atau bola dengan material zirkonium atau tungsten karbida, dengan tekanan homogenisasi yang dikendalikan oleh gaya yang bekerja selama seat valve menghalangi aliran fluida.

Beberapa homogenizers misalnya Avestin dan BEE Internasional, dilengkapi dengan satu atau dua nozzle sebagai gantinya valve. Teknologi untuk homogenizer tekanan tinggi nozzle awalnya dikembangkan untuk aplikasi pemotongan pada water jet. Dalam hal ini, pompa tekanan tinggi terhubung ke attenuator untuk mengurangi fluktuasi tekanan dan homogenisasi dicapai dengan nozzle head yang terbuat dari ruby, safir atau berlian. Lubang Nozzle biasanya <0,35 mm dengan material nozzle head tertentu tergantung pada tekanan maksimum, misalnya dengan berlian menjadi material yang paling kuat dan mahal. Dalam pengaturan nozzle, tekanan homogenisasi ditentukan oleh tekanan pompa. Dalam sistem mikrofluida, aliran-aliran dibagi dalam dua atau lebih saluran yang diarahkan pada bidang yang sama namun di sudut yang tepat dan didorong ke aliran tunggal. Tekanan driven pump (hingga 300 MPa) memberikan kecepatan tinggi di pertemuan dua arus yang menghasilkan tegangan geser yang tinggi, turbulensi, dan kavitasi lebih pada arus masuk aliran tunggal.

Gambar 2.  Valve homogenizers tekanan tinggi (Sumber: Anonim, 2011)

Keterangan :

A = mikrofluida

B = valve seat material keramik berbentuk jarum

C = valve seat material keramik berbentuk bola

D = proses pemecahan molekul besar

Valve homogenizers pertama kali diperkenalkan secara komersial pada awal abad ke-20 untuk pengolahan susu cair. Tujuan utamanya adalah untuk menghindari pemisahan lemak sehingga setiap konsumen akan menerima bagian yang adil nya dari lemak susu karena tidak akan ada pengurangan krim. Saat ini, hampir semua susu dihomogenisasi karena konsumen menolak melihat lapisan atas dari krim dalam susu mereka. Kekhawatiran atas dampak potensial dari susu dihomogenisasi pada kesehatan manusia telah dicabut oleh studi terbaru.

Gambar 3. Efek homogenisasi pada lemak dan kasein di susu

(Sumber: Anonim, 2011)

Dalam setup industri, lemak (atau krim) dipisahkan dari susu dengan sentrifugasi terus menerus, dihomogenisasi pada tekanan di bawah 20 MPa dan kemudian dituangkan kembali ke dalam susu skim dengan standar 1%, 2% atau mendekati 3,25% isi lemak.

Homogenisasi biasanya berlangsung dengan pengolahan mekanik, sehingga emulsi lemak memiliki tekanan masuk yang tinggi dan dipaksa dengan kecepatan tinggi melewati celah yang sangat sempit, di mana tetesan lemak dari emulsi lemak akan rusak sebagai akibat dari turbulensi yang terjadi pada kecepatan yang tinggi dan melalui gelembung kavitasi yang meledak dalam cairan. Proses ini berlangsung selama periode yang sangat singkat dan apa yang terjadi selama periode waktu tersebut adalah kecepatan emulsi lemak mengalami kenaikan sementara tekanan menurun.

Sebuah homogenizer pada dasarnya terdiri dari pompa piston besar yang memberikan tekanan tinggi, serta perangkat counter-pressure di mana homogenisasi tepat berlangsung. Perangkat counter-pressure, atau homogenizer valve, terdiri dari bagian yang bertekanan, resilient valve cone, posisi dudukan valve yang menggunakan cincin atau gasket dan casing pendukung valve yang dikelilingi oleh valve cone dan valve seat. Valve cone dan valve seat biasanya rotasi-simetris dan cenderung terjadi homegenisasi di antara dua bagian throttle radial tersebut (suatu celah). Tinggi, lebar dan panjang celah menentukan volume homogenisasi. Ukuran celah ini harus cukup kecil untuk mendapatkan proses homogenisasi yang efisien. Lebar celah berkurang pada tekanan yang lebih tinggi di liquid yang akan dihomogenkan, pada saat yang sama aliran yang lebih besar memerlukan celah yang lebih besar pula.

Susu yang berlabel UHT (Ultra High Temperatute) dibuat dari tekanan yang rendah pada saat yang sama dengan tujuan untuk meningkatkan kuantitas aliran. Ini berarti bahwa valve homogenizer harus dibuat lebih besar sehingga celahnya bisa mengecil. Namun untuk valve homogenizer yang lebih besar tentu memerlukan biaya yang lebih besar pula. Metode lainnya ialah dengan menghubungkan secara paralel celah-celah homogenizer dengan begitu ukuran celahnya akan berkurang.

Homogenizer yang digunakan di dalam industri tersebut terdapat didalam banyak model dan kapasitas. Perbedaan model tersebut terdapat dalam banyak model dan kapasitas. Perbedaan model tersebut umumnya terletak pada konstruksi lubang dan alat pengatur pengeluaranya.

Kebanyakan tekanan tinggi homogenizer digunakan untuk homogenisasi diadaptasi dari peralatan komersial yang dirancang untuk menghasilkan emulsi dan homogenat dalam industri makanan dan farmasi. Mereka menggabungkan tekanan tinggi dengan outlet valve. Dengan tekanan maksimum 10.000 psi pecah sekitar 40% dari sel pada single pass, 60% pada kedua dan 85% setelah empat kali lewat. Kapasitas homogenizer terus bervariasi dari 55 sampai 4.500 liter/jam pada 10-17% konsentrasi sel.

Gambar 4. Valve Homogenizer

(Sumber: Gerard, 2008)

Valve homogenizer paling efektif dalam memperkecil ukuran fase dispers kemudian meningkatkan luas permukaan fase minyak dan akhirnya meningkatkan viskositas emulsi sehingga mengurangi kemungkinan terjadinya ”creaming”. Valve homogenizer bekerja dengan cara menekan cairan dimana cairan tersebut dipaksa melalui suatu celah yang sangat sempit lalu dibenturkan ke suatu dinding atau ditumbukkan pada metal pins yang ada di dalam celah tersebut.

Valve homogenizer umumnya terdiri dari pompa yang menaikkan tekanan dispersi pada kisaran 500-5000 psi, dan suatu lubang yang dilalui cairan dan mengenai valve penghomogenan yang terdapat pada tempat valve dengan suatu spiral yang kuat. Ketika tekanan meningkat, spiral ditekan dan sebagian dispersi tersebut bebas di antara valve dan tempat (dudukan) valve. Pada titik ini, energi yang tersimpan dalam cairan sebagian tekanan dilepaskan secara spontan sehingga produk menghasilkan turbulensi yang kuat dan shear hidrolik. Cara kerja homogenizer ini cukup efektif sehingga bisa didapatkan diameter partikel rata-rata kurang dari 1 mikron tetapi homogenizer dapat menaikkan temperatur emulsi sehingga dibutuhkan pendinginan. Unitvalve homogenizersini mempunyai bagian pemompaan untukmenyuplai material yang akan dilarutkan melalui sebuah orifice terkecil. Tekanan akan tinggi  diturunkan mendekati tekanan fluida melalui sebuah orifice sehingga menghasilkan shear force tinggi dimana emulsi dan suspensi koloid akan dihasilkan secara continue.

DAFTAR PUSTAKA

Anonim. 2011. High Pressure Homogenization. (online). http://web.utk.edu/~fede/high%20pressure%20homogenization.html. (13 September 2015).

Dickenson, T.C. 1999. Valves, Piping, and Pipelines Handbook. Inggris : Elsevier Advanced Technology.

Gerard. 2008. Food Emulsifier and Their Applications. New York : Springer.


PRINSIP DASAR PASTEURISASI

PRINSIP DASAR PASTEURISASI

Created By : Widiantoko, R. K.

Susu pasteurisasi adalah susu yang diolah melalui proses pemanasan dengan tujuan mencegah kerusakan susu akibat aktivitas mikroorganisme perusak (patogen), pembusuk serta inaktivasi enzim dengan tetap menjaga kualitas nutrisi susu. Pasteurisasi adalah proses sterilisasi bahan baku yang tidak tahan panas seperti susu untuk meminimumkan perubahan kimiawi, fisik, dan organoleptik produk . Pasteurisasi tidak mematikan semua mikroorganisme tetapi hanya mematikan kuman yang patogen dan sel vegetatif tapi tidak mampu mematikan/inaktivasi spora. Pasteurisasi juga tidak mematikan semua mikroorganisme (sterilisasi), karena mikrobia termodurik tetap dapat bertahan dan bakteri pembentuk spora tetap aktif

Pasteurisasi menghasilkan produk dengan daya tahan yang pendek atau memerlukan pengawetan tambahan lain (teknologi Hurdle atau rintangan). Karena proses pasteurisasi tidak mematikan bakteri pembentuk spora maka produk harus diberi perlakuan lain yang dapat meminimalkan pertumbuhan mikroba seperti penambahan pengawet, pendinginan, MAP, penurunan pH dan pengaturan Aw.

Proses pasteurisasi dilakukan dengan memanaskan susu pada suhu 62 oC selama 30 menit atau suhu 72 oC selama 15 detik. Pasteurisasi tidak dapat mematikan bakteri non patogen, terutama bakteri pembusuk. Susu pasteurisasi bukan merupakan susu awet. Penyimpanan susu pasteurisasi dilanjutkan dengan metode pendinginan. Metode pendinginan pada suhu maksimal 10 oC memperpanjang daya simpan susu pasteurisasi. Mikroba pembusuk tidak dapat tumbuh dan berkembang pada suhu 3-10 oC (Setya, 2012).

Pasteurisasi adalah salah satu proses terpenting dalam penanganan susu. Proses pasteurisasi perlu dilakukan dengan benar sehingga membuat susu memiliki umur simpan yang lebih lama. Suhu dan waktu pasteurisasi adalah faktor penting yang harus diukur dalam menentukan kualitas dan kondisi umur simpan susu segar. Pasteurisasi bisa dilakukan dengan dua metode yaitu metode batch dan metode continue. Metode batch digunakan untuk pasteurisasi skala kecil. Tipe pasteurisasi yang digunakan pada metode batch adalah tipe pasteurisasi LTLT (Low Temperature Long Time). Metode continue digunakan untuk pasteurisasi skala menengah sampai besar. Tipe pasteurisasi yang digunakan adalah tipe HTST (High Temperature Short Time), HHST (Higher Heat Short Time), dan UHT (Ultra High Temperature). Untuk waktu dan temperature proses yang digunakan pada tiap tipe pasteurisasi dapat dilihat pada tabel 2.1. Pada pengaplikasiannya di industri, metode pasteurisasi yang umum dipakai adalah metode kontinyu. Metode ini dipilih karena dapat menghasilkan volume susu pasteurisasi yang lebih banyak dengan waktu proses yang lebih singkat, pemakaian listrik yang lebih rendah, dan kerusakan protein yang lebih sedikit karena waktu pemanasan yang lebih singkat. Metode Pasteurisasi yang umum digunakan adalah sebagai berikut (Setya, 2012):

1. Pasteurisasi dengan suhu tinggi dan waktu singkat (High Temperature Short Time/HTST), yaitu proses pemanasan susu selama 15–16 detik pada suhu 71,7–75 oC dengan alat Plate Heat Exchanger.

2. Pasteurisasi dengan suhu rendah dan waktu lama (Low Temperature Long Time/LTLT) yaitu proses pemanasan susu pada suhu 61 oC selama 30 menit.

3. Pasteurisasi dengan suhu sangat tinggi (Ultra High Temperature/UHT) yaitu memanaskan susu pada suhu 131 oC selama 0,5 detik. Pemanasan dilakukan dengan tekanan tinggi untuk menghasilkan perputaran dan mencegah terjadinya pembakaran susu pada alat pemanas.

Tjahjadi dan Marta (2011) menyatakan bahwa tujuan pengolahan susu pasteuriasi adalah sebagai berikut:

1. Membunuh semua bakteri patogen (penyebab penyakit) yang umumnya dijumpai pada bahan pangan, yaitu bakteri – bakteri patogen yang berbahaya ditinjau dari kesehatan masyarakat

This image has an empty alt attribute; its file name is image-1.png

2. Memperpanjang daya tahan simpan bahan pangan dengan jalan mematikan bakteri pembusuk dan menonaktifkan enzim pada bahan pangan yang asam (pH <4,5).

Proses pasteurisasi dapat menghancurkan 90–99% bakteri yang ada di dalam susu. Pasteurisasi dapat merusak vitamin C dan kemungkinan menjadikan laktosa kasein dan unsur lemak pada susu menjadi kecil. Efek yang ditimbulkan dari proses pasteurisasi adalah dapat mempertahankan nilai nutrisi dan karakteristik sensori bahan pangan hasil pasteurisasi (Setya, 2012).

Pasteurisasi hanya dapat mempertahankan umur simpan bahan pangan untuk beberapa hari saja, dapat menyebabkan terjadinya perubahan warna, aroma dan flavor yang mengakibatkan degradasi vitamin bahan. Pasteurisasi susu dengan suhu tinggi dapat menambah daya simpan susu segar selama 1 sampai 2 minggu (Setya, 2012).

Alat Penukar Panas Pasteurisasi

Susu Alat Penukar Panas (Heat Exchanger) menjadi alat yang paling esensial dalam proses pasteurisasi karena kebutuhan panas yang digunakan untuk pasteurisasi dihasilkan oleh alat penukar panas. Jenis alat penukar panas yang biasa digunakan dalam proses pasteurisasi adalah jenis PHE dan jenis THE.

Pemakaian alat penukar panas pada proses pasteurisasi, baik Plate Heat Exchanger (PHE), maupun Tubular Heat Exchanger (THE) memiliki kelebihan dan kekurangan masing-masing. Kelebihan dan kekurangan dari penggunaan Plate Heat Exchanger dan Tubular Heat Exchanger. Alat penukar panas jenis Plate Heat Exchanger (PHE) merupakan alat penukar panas yang paling efektif dan efisien untuk proses pasteurisasi karena memiliki luas permukaan panas yang lebih tinggi dibandingkan Tubular Heat Exchanger (THE). Hal itu juga mengakibatkan efisiensi panas yang dihasilkan oleh alat penukar panas PHE lebih dari 85%. Namun apabila dilihat dari segi investasi yang diperlukan dan skala penggunaan alat tersebut, yaitu laboratorium maka alat jenis THE lebih memiliki keunggulan dibandingkan PHE .

a). Plate Heat Exchanger (PHE)

Terdapat 3 komponen yang menyusun PHE, yaitu :

a). Lembar baja tahan karat beralur (plate)

Alat penukar panas ini terdiri dari lembar (plate) baja tahan karat (stainless steel) yang telah dicetak dengan mesin press berdaya tinggi yang membentuk alur-alur dengan motif tertentu yang dimaksudkan untuk memperbesar luas permukaan lembar baja dan terjadinya turbulensi aliran cairan. Lembar-lembar baja ini disusun dengan jumlah tertentu sesuai kebutuhan dalam suatu kerangka (frame)

b). Rangka penyusun (frame)

Suatu rangka (frame) yang menjepit seluruh susunan lembar baja. Agar setiap pasangan lembar terdapat celah yang dapat dialiri cairan maka disekeliling lembar terdapat parit guna meletakkan pita karet (gasket)

c). Pita karet (gasket)

Pita karet (gasket) terbuat dari bahan yang tahan panas/dingin, tahan karat dan non toksis (food grade). Susunan PHE tersebut dapat terdiri dari beberapa bagian (section), misalnya heating, cooling, regeneration, dll.

Pada alat plate Heat Exchanger terdiri dari 4 bagian yaitu:

  • Cooling section
  • Holding Section
  • Regenerative section (Regenerasi)

Panas yang digunakan kembali dikenal dengan “panas regenerasi”pada produk dingin yang masuk dan secara tidak langsung dipanaskan oleh panas produk yang akan keluar. Dalam hal ini produk yang masuk memerlukan sedikit panas untuk meningkatkan temperaturnya dan produk yang akan keluar memerlukan pendingin untuk menurunkan temperaturnya. Regenerasi penting dalam pasteurissasi karena energi yang digerakkan sekaligus digunakan untuk pendiginan dan pemanasan.

Regenerative effect didefinisikan sebagai persentase dari jumlah panas yang diregenerasikan.





  • Bagian Pemanasan / Heating Section

Pemanasan yang berlangsung di dalam alat PHE ini bisa diperoleh dari berbagai sumber panas antara lain:

  1. Steam heating : jarang dilakukan karena perbedaan temperatur antara uap dengan susu cukup besar sehingga menyebabkan adanya deposit susu pada plat. Ini berarti operasional PHE ini lebih singkat sebelum dibersihkan dan jarang kurang efisien dalam pemindahan panas melalui plat-plat, tetapi metode ini paling ekonomis dalam penggunaan uap panas.
  2. Water heating: pemanasan menggunakan air yang dipanaskan lebih baik, karena perbedaan temperatur antara susu dengan air lebih sedikit sehingga cukup ideal. Setelah melalui regeneration section temperatur susu yang masuk misalnya 54 C. Susu kemudian dipanaskan 72 C yang berarti panas diperlukan dari 54 C sampai 72 C sebanyak 18 C. Jumlah air yang disirkulasikan biasanya 3 x lipat dari susu, berarti air panas yang akan didinginkan sebanyak 6 C (18 C / 3x). Temperatur daari air panas yang masuk 3 C lebih panas dibanding suhu pasteurisasi. Hal ini berarti : Air panas yang didinginkan dari 75 C sampai 69 C = 6 C. Susu yang dipanaskan dari 54 C sampai 72 C = 18 C. Kelemahan dari water heating adalah pemakaian uap panas dan sumber listrik lebih banyak dibandingkan yang digunakan pada heating section.
  3. Vacuum steam heating system : Cara ini menjaga temperatur uap sedikit diatas temperatur produk yang didinginkan. Metode ini lebih ekonomis karena perbedaan temperatur dengan steam heating cukup rendah.

Pada prinsipnya semua plat di dalam PHE sama, putaran dari setiap 180 derajat diantara plat-plat disebut plat kiri dan plat kanan. Ketebalan plat antara 0.8-1.25 mm sesuai dengan keperluan. Plat tersebut dalam operasinya dibawah tekanan yang tinggi sehingga bentuknya zig-zag bergelombang. Plat-plat memiliki lubang di-empat sudutnya, tergantung bagaimana memasang plat tersebut di dalam PHE.

Jika plat dipasang dalam satu rangkaian, maka akan ada plat kanan pertama lalu plat kiri dan kemudian plat kanan lagi dan seterusnya. Bentuk plat yang zigzag bergelombang dalam operasionalnya saling mendukung. Aliran yang melalui dua plat akan tetap menempati bagian yang bersebrangan pada area yang konstan sehingga terbentuk turbulensi yang tetap menyebabkan partikel baru dalam cairan bersentuhan dengan panas yang disebarkan pada permukaan dan panas yang dipakai seragam. Plat dipasang dalam suatu bagan dimana dua cairan yang dipanaskan atau didinginkan akan selalu dipisahkan oleh plat.

b). Tubular Heat Exchanger (THE)

Sebelum diketemukan alat penukar panas PHE yang lebih kompak dan dapat diproduksi secara masal , maka alat penukar panas THE telah lebih dahulu digunakan. Perkembangan teknologi THE adalah diperkenalkannya Triple Tube THE dimana pipa terdalam dialiri media pemanas/pendingin, pipa ditengah dialiri produk dan pipa terluar dialiri media pemanas/pendingin lagi. Dengan sistem ini (dikembangkan oleh Stork-Amsterdam) koefisien pemindahan panas THE meningkat.

Alat penukar panas ini konstruksinya lebih sederhana, yaitu

1.    Pipa (tunggal atau kelompok pipa) yang dialiri produk

2.    Pipa bagian luar dengan diameter yang lebih besar (jacketed) yang dialiri media pemanas atau pendingin (double tube type THE).

a. PHE b. THE

Pustaka

Tjahjadi, C. dan H. Marta. 2011. Pengantar Teknologi Pangan. Universitas Padjajaran. Bandung.

Setya, A. W. 2012. Teknologi Pengolahan Susu. Fakultas Teknologi Pertanian Universitas Slamet Riyadi. Surakarta.


Karakteristik Susu

Karakteristik Susu

1.1        Susu

Susu berarti cairan bergizi yang dihasilkan oleh kelenjar susu  dari  mamalia betina. Susu adalah sumber gizi utama bagi bayi sebelum mereka dapat mencerna makanan padat. Susu binatang (biasanya sapi) juga diolah menjadi berbagai produk seperti mentega, yoghurt, es krim, keju, susu kental manis, susu bubuk dan lain-lainnya untuk konsumsi manusia. Semua orang di dunia ini membutuhkan susu untuk menopang kehidupannya. Baik dari bayi sampai orang yang sudah lanjut usia.

Dewasa ini, susu memiliki banyak fungsi dan manfaat. Untuk umur produktif, susu membantu pertumbuhan mereka.Sedangkan untuk orang lanjut usia, susu membantu menopang tulang agar tidak keropos. Susu mengandung banyak vitamin dan protein. Oleh karena itu, setiap orang dianjurkan minum susu. Sekarang banyak susu yang dikemas dalam bentuk yang unik.Tujuan dari ini agar orang tertarik untuk membeli dan minum susu. Ada juga susu yang berbentuk fermentasi. 

2.1       Komposisi susu

Dipandang dari segi gizi, susu merupakan bahan makanan yang hampir semua sempurna dan merupakan makanan alamiah bagi hewan menyusui yang baru lahir, dimana susu merupakan satu-satunya sumber makanan pemberi kehidupan sesudah melahirkan. Secara biologis, susu merupakan sekresi fisiologis kelenjar ambing sebagai makanan dan proteksi imunologis (immunologis protection) bagi bayi mamalia.

2.1.1    Komposisi kimia Susu

Secara kimia susu adalah emulsi lemak dalam air yang mengandung gula, garam-garam mineral dan protein dalam bentuk suspense koloidal. Komponen utama susu adalah air, lemak, protein (kaseindan albumin), laktosa (gula susu) dan abu. Komponen susu selain air merupakan Total Solid (TS) dan Total Solidtanpa komponen lemak merupakan Solid non Fat (SNF). Beberapa istilah lain yang biasa digunakan sehubungan dengan komponen utama susu ini adalah plasma susu atau susu skim, yaitu bagian susu yang mengandung semua komponen kecuali lemak dan serum susu atau biasa disebut Whey, yaitu bagian susu yang mengandung semua komponen susu kecuali lemak dan kasein.

Pada umumnya kandungan air dalam susu berkisar antara 82 – 90 persen, lemak antara 2,5 – 8,0 persen, kasein antara 2,3 – 4,0 persen, gula antara 3,5 – 6,0 persen, albumin antara 0,4 – 1,0 persen dan abu antara 0,5 – 0,9 persen.

Tabel 2.1 Komposisi Susu Segar Sapi

KomponenPersentase
Air
Bahan padat (TS)
Lemak
Protein
Gula
Abu
87,25
12,75
3,80
3,50
4,80
0,65

Beberapa faktor yang mempengaruhi konsentrasi komponen-komponen dalam susu ialah mastitis, tahapan dalam periode laktasi, musim dan keadaan makanan. Variasi komposisi susu berdasarkan musim erat kaitannya dengan kombinasi pengaruh suhu dan pemberian makanan. Suhu yang tinggi dan kualitas makanan yang buruk akan menyebabkan kandungan solid non fatdalam susu menjadi rendah. Sebaliknya makanan yang berkualitas baik dan suhu rendah cenderung akan meningkatkan kandungan solid non fat dalam susu.

Susu yang dihasilkan pada awal periode laktasi mempunyai kandungan solid non fat yang tinggi, kemudian menurun pada periode laktasi 40 – 60 hari dan akan meningkat kembali secara gradual sampai bulan keenam periode laktasi, diikuti dengan kenaikan yang tajam pada akhir periode laktasi.

2.1.1.1 Air

Air yang tergantung dalam susu terutama berfungsi sebagai pelarut bagi komponen-komponen susu yang dapat larut atau membentuk suspense.

2.1.1.2 Lemak susu

Lemak susu yang juga disebut sebagai butter fat merupakan komponen yang sangat penting dalam susu, bahkan secara komersial lemak susu merupakan komponen yang sangat berharga. Flavor susu dan sebagian besar produk susu olahan terutama ditimbulkan oleh kandungan lemak dalam susu.

Lemak susu berbentuk butiran-butiran dengan diameter yang bervariasi antara 0,001 mm sampai 0,01 mm tergantung pada keturunan, tahap-tahap dalam periode laktasi dan keadaan masing-masing sapi. Butiran-butiran atau yang juga disebut globula, lemak mempunyai ukuran paling besar pada dua minggu pertama periode laktasi dan laju penurunan ukuran yang tercepat terjadi selama dua bulan berikutnya. Setelah itu laju penurunan ukuran berlangsung lambat tetapi terus terjadi secara kontinyu sampai akhir periode laktasi.

Globula lemak tersebar merata didalam susu sebagai emulsi lemak dalam air, dimana globul lemak berada dalam fase terdispersi. Setiap globul lemak dilapisi oleh lapisan tipis yang terdiri dari protein dan fosfolipida, terutama lesitin yang terdapat dalam jumlah kecil didalam susu. Adanya lapisan ini menyebabkan globul lemak tidak dapat bergabung satu sama yang lain, sehingga emulsi susu menjadi stabil. Pengadukan mekanis seperti pada proses churning dapat merusak lapisan protein fosfolipida tersebut, sehingga globula-globula lemak akan bergabung menjadi satu dan menghasilkan butter.

Asam-asam lemak terpenting yang terdapat dalam susu adalah asam butirat, kaproat, kaprilat, kaprat, laurat, miristat, palmitat, oleat, stearat dan linoleat. Adanya asam butirat dalam lemak susu menyebabkan susu mempunyai karakteristik yang berbeda karena tidak ada lemak-lemak hewan lainnya yang mengandung asam butirat. Sekitar 60 – 65 persen diantara asam-asam lemak tersebut merupakan asam lemak jenuh dan sisanya sekitar 35-40 persen merupakan asam lemak tidak jenuh.

Sebagian besar asam-asam lemak dalam lemak susu merupakan asam lemak dengan jumlah atom karbon genap, yaitu untuk asam-asam lemak jenuh mulai dari asam butirat dengan 4 atom C sampai asam kerotat dengan 26 atom C. Asam miristat, palmitat dan stearat berjumalah 72 – 78 persen dari total asam lemak jenuh dan 45 -50 persen dari total asam lemak yang terdapat dalam lemak susu. Asam-asam lemak dengan rantai bercabang, asam-asam lemak berantai lurus dengan jumlah atom C ganjil dan asam-asam lemak berantai lurus dengan jumlah atom C 20-26 terdapat dalam susu dengan konsentrasi yang sangat tinggi.

Asam-asam lemak tidak jenuh yang terdapat dalam susu mempunyai panjang rantai antara 10 – 24 atom C dan terdapat dalam konfigurasi geometris yang berbeda-beda. Asam oleat dengan satu ikatan rangkap merupakan komponen utama dalam lemak susu, yaitu mencapai sekitar 30 persen dari total asam lemak dalam susu. Sedangkan asam-asam lemak dengan dua atau lebih ikatan rangkap hanya terdapat 3 – 5 persen. Komposisi asam-asam lemak dalam lemak susu dapat dilihat pada tabel 2.2.

Tabel 2.2 Komposisi asam-asam lemak dalam lemak susu

Asam LemakTitik cair(0C)Rata-rata(%)
Volatil
Bersifat larut:
–          Butirat
–          Kaproat
–          Kaprilat
–          Kaprat
Bersifat tidak larut:
–          Laurat


8,41
0,11
5,43
1,04

8,0


2,93
1,90
0,79
1,57

5,85
Non-Volatil
Tidak larut
–          Mirisat
–          Palmitat
–          Steara
t–          Oleat
–          Linoleat


58,06
4,07
0,01
4,0
-17,8


18,78
15,17
14,91
31,90
4,50

Lemak-lemak yang terbentuk dari asam-asam lemak yang mudah menguap (volatila) bersifat tidak stabil dan mudah terurai, sehingga mempengaruhi flavor susu. Timbulnya bau tengik pada butter disebabkan karena terbentuknya asam lemak bebas terutama asam butirat. Cara-cara pengolahan dan penyimpanan yang baik dan diterapkan dalam industry pengolahan susu tidak menyebabkan perubahan-perubahan kimiawi yang nyata terhadap asam-asam lemak jenuh dalam susu. Sebaliknya asam-asam lemak tidak jenuh biasanya mengalami perubahan yang cukup nyata berupa kerusakan oksidatif terhada susu dan produk-produk hasil olahan susu.

Keturunan, jenis dan mutu makanan serta musim merupakan faktor-faktor utama yang mempengaruhi komposisi lemak susu. Faktor-faktor tersebut terutama berpengaruh terhadap kandungan asam butirat, palmitat, stearat dan asam oleat dalam lemak susu. Kenaikan konsentrasi asam-asam lemak dengan titik cair rendah seperti asam butirat dan asam oleat akan menghasilkan lemak susu dengan konsentrasi yang lunak, sedangkan kenaikan konsentrasi asam stearat akan menghasilkan lemak susu yang keras.

Lesitin merupakan fosfolipida utama yang terdapat dalam susu. Jenis-jenis fosfolipida lainnya seperti sefalin dan sfingomiselin hanya terdapat dalam konsentrasi yang sangat kecil. Lesitin terdapat pada bagian permukaan globul lemak dan bersama-sama dengan protein membentuk lapisan yang melindungi globul lemak sehingga tetap terdispersi dalam bentuk emulsi lemak/air. Konsentrasi lesitin berkisar antara 0,027 – 0,044 persen dalam susu, 0,013 – 0,035 persen dalam susu skim 0,14 – 1,16 persen dalam buttermilk yang dibuat dari sweet cream dan 0,10 – 0,17 persen dalam buttermilk yang dibuat dari soured cream.

2.1.1.3 Protein susu

Kasein merupakan jenis protein terpenting dalam susu dan terdapat dalam bentuk kalsium kaseinat. Kasein merupakan partikel-partikel halus berdiameter sekitar 80 µm dan membentuk suspense koloidal dalam susu. Kasein dapat diendapkan dengan asam, alkohol, renet, dan logam berat. Asam dapat memindahkan kasein dari kalsium kaseinat sehingga diperoleh endapan kasein yang terpisah dari kalsium. Pada suhu yang tinggi jumlah asam yang diperlukan untuk koagulasi kasein lebih sedikit dibandingkan jika koagulasi dilakukan pada suhu rendah. Susu segar mempunyai pH sekitar 6,6. Apabila pH tersebut diturunkan sampai pada pH 4,7, susu mulai membentuk Curd. pH 4,7 ini merupakan titik isoelektrik kasein. Berat molekul kasein berkisar antara 12.800 – 375.000.

Kasein adalah protein yang bermutu tinggi karena mengandung semua asam-asam amino esensial. Karena itu kasein baik dalam susu maupun dalam susu maupun dalam produk-produk olahan susu merupakan komponen yang penting. Kasein dalam susu terdiri dari tiga fraksi yang berbeda, yaitu α-kasein, β-kasein dan γ-kasein. Tiap fraksi mengambil bagian berturut-turut sekitar 75 persen, 22 persen dan 3 persen. Perbedaan komposisi dari ketiga fraksi disajikan dalam tabel 2.3.

Tabel 2.3 Komposisi dan sifat-sifat komponen kasein

Komposisiαβγ
Nitrogen (%)
Fosfor (%)
Sulfur (%)
Titik isoelektrik (pH)
Mobilitas (µ)
Rotasi spesifik (x   ) 025
15,58
0,99
0,75
4,7
-6,75
-90,5
15,53
0,55
0,86
4,9
-3,05
-125,2
15,40
0,11
1,03
5,8
-2,01
-131,9

Berbeda dengan kasein, albumin merupakan protein yang tidak mengandung fosfor. Pada umumnya albumin dianggap berbentuk larutan sejati dalam susu, tetapi albumin berbentuk larutan koloidal yang sangat halus. Albumin memiliki berat molekul yang lebih rendah daripada kasein, yaitu berkisar antara 1.000 – 25.000.

Pada suhu kamar, albumin tidak berkoagulasi oleh rennet atau asam, tetapi dengan pemanasan pada pH 4 – 5, albumin akan mengendap. Albumin atau lakta albumin merupakan bagian dari protein serum susu yang bersifat larut dalam larutan ammonium sulfat netral setengah jenuh atau dalam larutan magnesium sulfat jenuh. Fraksi protein serum susu (protein susu skim selain kasein), yang bersifat tidak larut dalam larutan tersebut diatas disebut fraksi globulin atau laktoglobulin. Albumin juga merupakan jenis protein yang bermutu tinggi.

Jenis protein ketiga yang terdapat pada susu ialah laktoglobulin. Konsentrasi globulin merupakan protein utama dengan konsentrasi yang lebih tinggi daripada kasein dan merupakan peranan penting dalam memberikan kekebalan bayi yang baru lahir terhadap infeksi.

Globulin memiliki unsur-unsur yang sama dengan kasein, yaitu: karbon, hydrogen, oksigen, nitrogen, sulfur dan fosfor. Globulin dapat dipisahkan dari albumin melalui pengendapan dengan garam magnesium sulfat berlebih. Disamping kasein, albumin dan globulin dalam susu juga terdapat beberapa jenis protein lainnya yang walaupun terdapat dalam konsentrasi yang sangat rendah tetapi mempunyai peranan yang cukup berarti dalam nilai gizi susu dan produk susu, yaitu laktosa.

Laktosa terdapat dalam dua macam bentuk, yaitu α-laktosa dan β-laktosa. α-laktosa dapat berupa hidrat maupun anhidrat. Apabila α-laktosa atau β-laktosa dilarutkan dalam air, masing-masing bentuk laktosa akan berubah menjadi bentuk lain sampai tercapai keseimbangan. Oleh bakteri asam laktat, laktosa akan difermentasikan menjadi asam laktat.

2.1.2    Sifat fisik susu

2.1.2.1 Rasa

Susu segar yang diproduksi dalam kondisi ideal tidak memiliki flavor yang kuat, tetapi mempunyai rasa sedikit manis yang menyenangkan. Hal ini terutama disebabkan oleh hubungan antara kandungan laktosa dan klorida dalam susu. Apabila hubungan ini terganggu, seperti pada akhir periode laktasi atau dalam kondisi mastitis, dimana kandungan klorida relatif lebih tinggi, maka flavor susu dapat dipengaruhi, antara lain susu mempunyai rasa garam.

Kandungan lemak dan protein dalam susu merupakan komponen yang membentuk flavor susu, tetapi bukan merupakan komponen utama yang menentukan rasa susu. Susu dengan kandungan lemak dan bahan padat bukan lemak (SNF) yang rendah mempunyai rasa tawar atau flat, sedangkan susu dengan lemak dan SNF yang tinggi mempunyai flavor yang lebih kuat.

Kelainan-kelainan rasa dan bau susu dapat terjadi setiap saat dan kelainan ini merupakan keadaan yang tidak normal. Beberapa penyebab rasa dan bau susu yang tidak normal adalah kondisi fisik sapi, jenis makanan yang diberikan, penyerapan bau oleh susu karena kontak dengan lingkungan yang mempunyai bau keras, penguraian komposisi susu karena pertumbuhan bakteri atau mikroba lainnya dalam susu, bau yang berasal dari benda-benda asing yang terdapat dalam susu dan perubahan-perubahan bau karena reaksi kimia.

2.1.2.2 Warna

Warna susu berkisar antara putih kebiruan sampai kuning keemasan, yaitu tergantung pada keturunan jenis makanan serta kandungan lemak dan bahan padat dalam susu. Warna putih susu berasal dari cahaya yang direfleksikan oleh globula-globula lemak, partikel koloidal kasein dan kalsium fosfat yang tesebar dalam susu. Warna kuning susu disebabkan oleh pigmen karoten yang larut dalam lemak susu. Susu yang lemaknya sudah dipisahkan atau susu dengan kandungan lemak yang rendah mempunyai kebiruan.

Pigmen lain yang terdapat dalam susu ialah riboflavin, tetapi warnanya tidak timbul sampai kandungan lemak dan kasein dalam susu dipisahkan seperti pada pembuatan keju. Pigmen ini larut dalam air dan menimbulkan warna kuning kehijauan pada whei. Beberapa mikroba dapat mempengaruhi warna susu, misalnya susu yang berwarna merah dan biru, masing-masing disebabkan oleh Serratia marcescens dan Pseudomonas cynnogenes. Timbulnya warna akibat mikroba merupakan keadaan yang tidak normal.

2.1.2.3 Titik beku

Susu mempunyai titik beku rata-rata pada suhu -0,550C sampai -0,610C. Titik beku susu dipengaruhi oleh komponen-komponen yang terlarut, terutama laktosa dan klorida. Kedua komponen ini mempunyai hubungan yang berlawanan, yaitu apabila salah satu komponen meningkat, komponen lainnya akan menurun. Kandungan lemak dan kasein dalam susu dalam susu tidak mempengaruhi titik beku susu.

Variasi kandungan laktosa dan mineral dalam susu sangat kecil, sehingga titik beku susu relatif konstan. Keadaan ini dapat digunakan untuk mengetahui ada tidaknya pemalsuan susu, yaitu pemalsuan dengan cara menambahkan air kedalam susu. Penambahan 1 persen air (v/v) kedalam susu akan meningkatkan titik beku susu sebesar 0,00550C. Susu dengan titik beku yang lebih rendah daripada -0,5250C, dapat dianggap bebas dari penambahan air.

Pembekuan menyebabkan perubahan-perubahan fisik dan flavor susu yang tidak dapat kembali ke keadaan semula. Pembekuan menyebabkan globula lemak kehilangan bentuk emulsinya. Globula lemak tersebut akan bergabung satu sama lain, menghasilkan bentuk dan ukuran lemak yang berbeda. Kasein juga akan dipengaruhi oleh proses pembekuan. Sebagian kasein dipecah dari bentuknya dalam susu sebagai kalsium kaseinat dan mengendap dalam bentuk serpihan.

2.1.2.4 Titik didih

Titik didih susu sedikit lebih tinggi daripada titik didih air murni, yaitu rata-rata 100,170C. Hal ini karena bahan-bahan yang terlarut dalam susu akan meningkatkan titik didih.

2.1.2.5 Berat jenis

Berat jenis rata-rata susu penuh yang normal adalah 1,032 pada suhu 160C. Susu lebih berat daripada air karena semua komponen padatan kecuali lemak, mempunyai berat jenis yang lebih tinggi daripada air. Pada Tabel 2.4 menunjukkan berat jenis dari berbagai komponen susu.

Tabel 2.4 Berat jenis komponen susu

Komponen SusuBerat Jenis
Sharp and Hard
Pada suhu 300C
Richmond
Pada suhu 150C
Lemak
Plasma bahan padat
Laktosa
Asam sitrat
Protein
Abu
0,91
31,59
21,630
1,680
1,350
3,500
0,93
1,61
61,666
(sebagai laktosa)
1,34
65,500

Susu normal mempunyai kisaran berat jenis antara 1,029 – 1,035. Susu dengan kandungan lemak yang rendah, sebaliknya susu dengan kandungan lemak yang tinggi mempunyai berat jenis yang tinggi pula. Hal ini terutama karena pada suhu yang normal, kenaikan kandungan lemak susu juga diikuti dengan kenailkan kandungan bahan padatan bukan lemak (SNF), sehingga gabungan berat jenis dan komponen-komponen susu lebih menentukan berat jenis daripada pengaruh tunggal lemak susu.

2.1.2.6 Panas jenis

Panas jenis dari suatu bahan merupakan rasio antara jumlah panas yang dipelukan untuk menaikkan suhu satu derajat dan jumlah panas yang dibutuhkan untuk menaikkan suhu air dengan massa yang sama sebanyak satu derajat. Dengan mengetahui panas jenis suatu bahan, maka jumlah panas yang harus diberikan atau dipindahkan untuk menaikkan atau menurunkan suhu bahan tersebut sampai pada suhu tertentu dapat dihitung. Tabel 2.5 menunjukkan panas jenis susu dan produk susu.

Tabel 2.5 Panas jenis susu dan produk susu

ProdukPanas jenis
00C150C400C600C
Whole milk
Susu skim
Whey
Cream 15%
Cream 30%
Cream 45%
Butter
Butter fat
0,920
0,940
0,978
0,750
0,673
0,606


0,938
0,943
0,976
0,723
0,983
1,016


0,930
0,952
0,974
0,899
0,852
0,787
0,556
0,500
0,918
0,963
0,972
0,900
0,860
0,793
0,580
0,530

2.1.2.7 Tegangan permukaan

Tegangan permukaan susu penuh sebesar 55,3 dyne, susu skim sebesar 57,4 dyne dan 30 – 35% krim sebesar 49,6 dyne. Kenaikan kandungan lemak dan protein akan menurunkan tegangan permukaan susu, pasteurisasi dapat menaikkan tegangan permukaan susu sedangkan homogenisasi dapat menurunkan tegangan permukaan tersebut. Kenaikan suhu juga dapat menurunkan tegangan permukaan susu.

2.1.2.8 Viskositas

Susu dengan kandungan lemak rata-rata 4,32 persen mempunyai viskositas rata-rata 1,6314 centipoise, sedangkan susu skim mempunyai viskositas rata-rata 1,404 centipoise. Viskositas susu dipengaruhi oleh berturut-turut mulai dari yang paling besar pengaruhnya adalah kasein, lemak dan albumin. Suhu rendah akan menyebabkan kenaikan viskositas susu karena terjadi clumping dari globula-globula lemak. Pengadukan mekanis dapat memecah plumping globula lemak tesebut sehingga viskositas menurun.

Homogenisasi dapat meningkatkan susu penuh, tetapi sedikit menurunkan viskositas susu skim. Hal ini disebabkan karena homogenisasi menyebabkan globula lemak menjadi kecil, sehingga mempunyai luas permukaan yang lebih besar. Luas permukaan yang lebih besar menyebabkan lapisan film protein yang terserap pada permukaan globul lemak lebih banyak, sehingga viskositas meningkat.

Suhu pasteurisasi dapat menurunkan viskositas karena pecahnya clumpingglobula-globula lemak. Tetapi pada suhu tinggi dibawah tekanan, viskositas akan meningkat karena perubahan sifat fisik protein. Viskositas susu juga akan meningkat dengan meningkatnya kandungan lemak dalam susu.

2.1.2.9 Air terikat

Susu, krim dan produk-produk susu berbentuk cairan lainnya mengandung air terikat dalam jumlah yang cukup berarti. Kasein mengikat sekitar 50% dari kandungan total air terikat, albumin mengikat sekitar 30%, membran globula lemak 15% dan bahan padat lainnya mengikat sekitar 4% air terikat.  Pasteurisasi dapat menurunkan air terikat dalam susu, sedangkan pemeraman umumnya menaikka kandungan air terikat.

2.1.2.10 Buih

Pembentukan buih oleh susu dan produk-produk susu merupakan peristiwa yang biasa terjadi. Buih yang stabil merupakan sifat yang dikehendaki pada whipping cream. Tetapi pada proses pengisian susu kedalam kaleng atau botol dan proses pemisahan susu, terbentuknya buih tidak dikehendaki.

Protein merupakan penyebab utama terbentuknya buih. Protein teradsorbsi pada lapisan film tipis yang mengelilingi gelembung udara, sehingga udara yang terperangkap dalam gelembung tersebut menjadi stabil. Suhu rendah 20C – 40C menyebabkan pembentukan buih dengan volume yang paling besar, sedangkan suhu 160C – 320C menghasilkan volume buih yang terendah. Pengaruh suhu terhadap pembentukan buih dapat dilihat pada Tabel 2.6.

Pasteurisasi tidak mempunyai pengaruh yang berarti terhadap pembentukan buih. Tetapi homogenisasi dapat meningkatkan buih pada suhu 40 – 270C dan menurunkan volume buih pada suhu 600C. Kandungan lemak dalam susu menimbulkan efek menekan pembentukan buih, sedangkan bahan padatan bukan lemak (SNF) dapat meningkatkan pembentukan buih.

Tabel 2.6 Pengaruh suhu terhadap pembentukan buih pada susu

Lesitin mempunyai sifat memecah buih. Pengadukan krim dalam proses churning akan membebaskan sebagian besar lesitin yang kemudian akan terikut kedalam buttermilk, sehingga hanya sedikit buih yang terbentuk pada buttermilk.

Buih yang terbentuk pada susu, krim dan buttermilk terdiri dari 2 tipe, yaitu tipe protein dan buih tipe fosfolipid-protein. Buih tipe protein akan dominan pada suhu yang lebih tinggi. Apabila pembentukan buih pada susu skim dilakukan pada suhu 350C, maka penambahan lemak sampai tingkat 5 persen akan menurunkan volume dan stabilitas buih pada susu skim tersebut. Penambahan lemak lebih lanjut yaitu sampai tingkat 30% akan menaikkan volume dan stabilitas buih yang selanjutnya akan konstan jika lemak ditambahkan lagi sampai lebih dari 30%. Apabila pembentukan buih dilakukan pada suhu 60C volume buih tidak mengalami perubahan walaupun kandungan pada susu skim lemaknya dinaikkan.


Air Minum Alkali dan pH dalam Tubuh

Widiantoko, R.K

Air alkali

Air alkali hingga saat ini masih menjadi topik pembicaraan yang cukup kontroversial. Banyak pakar kesehatan menentang penggunaannya, karena penelitian yang ada saat ini masih belum cukup untuk membuktikan berbagai klaim mengenai manfaat air alkali. Namun, beberapa penelitian menunjukkan bahwa air alkali dapat bermanfaat pada beberapa kondisi, antara lain:

  • Air alkali diduga dapat menurunkan asam lambung.

Sebuah studi di tahun 2012 mengungkapkan bahwa minum air alkali dengan pH sebesar 8,8 dapat membantu menonaktifkan pepsin (enzim utama penyebab refluks asam lambung) dan mengurangi tingkat keasaman isi lambung. Namun, penelitian lebih lanjut masih harus dilakukan untuk membuktikan klaim tersebut pada manusia.

  • Air alkali diduga dapat memperlambat pertumbuhan sel kanker.

Beberapa teori mengatakan bahwa sel-sel kanker tumbuh paling baik dalam kondisi asam. Air alkali dipercaya dapat membantu mengurangi kadar keasaman darah, sehingga diduga dapat bermanfaat untuk memperlambat atau menghentikan proses pertumbuhan sel-sel kanker. Namun, teori ini juga banyak ditentang dan masih belum ada bukti ilmiah terbaru yang mendukung kebenarannya.

  • Air alkali diduga bermanfaat untuk kesehatan tulang.

Beberapa penelitian telah dilakukan untuk membuktikan teori ini. Sebuah penelitian pada tahun 2009 menunjukkan bahwa air alkali dengan kandungan bikarbonat dan kalsium yang tinggi dapat meningkatkan kekuatan tulang. Namun, masih dibutuhkan penelitian lebih lanjut untuk melihat apakah efek ini berguna untuk jangka panjang dan apakah dapat membantu meningkatkan kepadatan tulang.

Selain itu, air alkali diyakini sejumlah orang mampu meningkatkan metabolisme, membantu tubuh menyerap nutrisi dengan lebih efektif, dan memperlambat proses penuaan. Namun, klaim-klaim tersebut belum dibuktikan kebenarannya oleh para dokter.

Produk minuman air alkali atau alkaline water diklaim dapat meningkatkan vitalitas tubuh hingga menyembuhkan beragam penyakit. Namun, di balik klaim itu, air alkali hanya masuk daftar produk olahan kemasan saja.

“Air alkali dengan pH 8,5 ke atas. Obat segala macam penyakit, kanker, tumor dan lain-lain.” Selain dengan media spanduk, para produsen dan distributor air alkali menampilkan beragam testimoni dan edukasi kesehatan yang diunggah pada situsweb dan media sosial. Fenomena ini tak hanya di Indonesia tapi juga di negara lainnya. 

Air Alkali adalah air yang diklaim memiliki tingkat pH lebih dari 7, kaya senyawa alkalizing, termasuk kalsium, magnesium, oksigen, dan potassium. Skala PH berkisar antara 0-14, angka 7 berada di titik netral, di bawah 7 berarti asam, dan di atas 7 artinya basa. Para produsen air alkali, menanamkan kepercayaan pada konsumen bahwa air tersebut dapat menetralkan asam dalam aliran darah dengan kandungan pH-nya yang cenderung basa – karena PH di dalam tubuh cenderung asam. Selain itu juga berfungsi sebagai antioksidan serta pembersih, membantu tubuh metabolisme nutrisi lebih efektif sehingga membuat kesehatan dan kinerja menjadi lebih baik. 

Pembuatan air alkali dengan cara mengelektronisasi air telah menjadi produksi massal di Jepang semenjak 1965. Langkah ini dipilih Kementerian Kesehatan dan Kesejahteraan Jepang guna terapi medis. Air terionisasi alkali yang dihasilkan dari mesin elektronisasi tersebut diyakini dapat mengurangi penyakit fermentasi gastrointestinal, diare kronis, gangguan pencernaan, hiperkus, mengontrol asam lambung. Penelitian yang dilakukan oleh Takashi Hayakawa dan kawan-kawan dari Gifu University, menyatakan uji klinis air terionisasi alkali terbukti lebih efektif meredakan diare kronis daripada air bersih. 

Konsumsi air alkali terionisasi jangka panjang dapat mengurangi sulit buang air besar. Hasil ini diketahui dari model perlakuan tikus yang diberi air alkali. Pada hari ke-88, jumlah amonium dalam kotoran segar dan kandungan feses keras cenderung menurun. Hal ini disebabkan oleh sinergi antara tingkat kalsium yang terkandung dalam air alkali (sekitar 50ppm) dan tingkat pH pada air. 

Infografik Air Alkali Rev

Benarkah klaim bahwa air alkali itu selalu bermanfaat terhadap tubuh?

Beberapa merek air alkali mengklaim produksi mereka adalah air yang diolah melalui alat teknologi Jepang sehingga mencapai pH 8 hingga 9. Sebagai informasi, pH air minum harus berkisar antara 6,5 – 8,5. pH tinggi pada air minum diklaim dapat membuat pH darah juga menjadi alkali atau basa, yang diyakini bisa membuat tubuh lebih sehat. pH darah sebenarnya netral sehingga bila pH darah tiba-tiba asam atau basa, yang mengatur adalah organ paru dan ginjal, bukan dari air yang kita minum. pH darah tidak dipengaruhi oleh minuman yang Anda konsumsi. Secara medis, setiap minuman dan makanan yang Anda konsumsi akan masuk ke dalam lambung. Di sana, makanan dan minuman akan bertemu asam lambung yang sangat kuat, dengan pH 2 hingga 3. Artinya, keluar dari lambung makanan dan minuman yang sudah dicerna akan bersifat asam.

Menurut Prof. Dr. H. M.A Rindit Pambayun, Ketua Perhimpunan Ahli Teknik Pangan Indonesia (PATPI) Pusat, tubuh manusia dirancang untuk menyeimbangkan PH setiap makanan maupun minuman yang masuk. Jadi lambung kita meregulasi agar PH-nya sama dengan sekitar, dibuat pH derajat keasaman 2 (pH2).

Derajat keasaman 2 dalam lambung berguna untuk menyeleksi agar semua mikroorganisme pantogen mati, kecuali bakteri asam laktat. Sehingga ketika lepas dari lambung makanan yang dikonsumsi akan terbebas dari patogen. 

Kalau makanan terlalu tinggi PH nya dan dijadikan daily food itu berat sekali lambung meregulasi. Bisa-bisa masa pakai lambung seharusnya sampai umur 85 tahun, ini karena harus meregulasi setiap hari jadi di umur 45 tahun sudah habis-habisan.

Makanan dan minuman tersebut kemudian akan turun ke usus. Di sini, pH-nya akan menjadi netral. Nah, hasil proses pencernaan inilah yang akan diserap oleh tubuh.

Karena perut dirancang untuk menjadi asam, maka lambung harus memproduksi lebih banyak asam setiap kali meminum air alkali untuk mengkompensasi dilusi cairan lambung. Mempertahankan keasaman lambung diperlukan untuk melindungi infeksi bakteri dan virus. Mengubah lingkungan asam ini hanya akan membuat kemungkinan usus terinfeksi. 

Regulator seperti Kementerian Kesehatan (Kemenkes) maupun Badan Pengawas Obat dan Makanan (BPOM) juga melarang penjualan air alkali yang diklaim sebagai obat. Meskipun, penjualan alat-alat untuk memproduksi air alkali masih diperbolehkan. Perizinannya, berada di bawah naungan Kemenkes. Produk minuman alkali kemasan juga sudah banyak juga yang didaftarkan di BPOM. 

Namun, air alkali untuk produk kesehatan belum ada yang disetujui. Air dengan pH basa di Indonesia masih dikategorikan sebagai produk pangan olahan dalam kemasan. Konsekuensinya air alkali dilarang mencantumkan klaim sebagai obat. Selain itu, air alkali yang edar di Indonesia juga wajib memiliki Nomor Izin Edar (NIE) sebagai syarat untuk produk pangan olahan dalam kemasan eceran. .

Asam basa di dalam tubuh

Derajat keasaman atau pH kegunaannya untuk menyatakan tingkat keasaman atau kebaasaan suatu larutan yang skalanya bersifat relatif tergantung pada standar pH beberapa jenis larutan yang telah ditentukan oleh standar internasional. Tinggi rendahnya pH suatu larutan sangat dipengaruhi oleh kandungan zat mineral lainnya. Sebagaimana yang telah ditetapkan, pH standar (bersifat netral) ialah 7 sampai dengan 8,5. Jika nilai pH suatu larutan bernilai dibawah 7 berarti larutan itu bersifat asam, sedangkan jika nilainya di atas 8,5 berarti basa. Air adalah cairan yang derajat keasamannya adalah netral (pH 7).

Di dalam tubuh manusia, cairan tubuh dan air merupakan komponen yang paling banyak persentasinya. Cairan tubuh manusia ini pun juga mempunyai derajat keasaman atau pH, namun secara alami tubuh akan mengontrol agar cairannya berada pada tingkat keasaman yang tidak kurang dari pH 7,3 dan tidak lebih dari pH 7,45. Terjadinya perubahan pH dalam tubuh akan memicu proses metabolisme untuk bertindak melakukan penetralan secara otomatis.

Darah dan jaringan tubuh perlu sedikit keadaan basa untuk menjaga keseimbangan homeostatis, sehingga pertama yang diperhatikan adalah keasaman dalam tubuh dengan melakukan tes pH pada urin menggunakan strip pH. Kesehatan darah yang baik adalah pada pH 7,365 dan dengan demikian, pH urine harus disekitar 7,2-7,5. Jika pH dalam tubuh di bawah 7, hal ini menunjukkan tingkat keasaman pada tubuh yang dapat merusak seluruh area tubuh. Biasanya mereka dengan penyakit kanker ditemukan pH dalam tubuh mereka beradapada 4,5 atau 5 yang relatif asam.

Secara singkat, derajat keasaam atau pH dalam tubuh sangat penting karena bermanfaat untuk menjaga keseimbangan cairan tubuh, yang juga akan berpengaruh terhadap kesehatan. Menurut ahli, kondisi tubuh yang alkali (basa) dapar mencegah dari terkena penyakit degeneratif termasuk kanker. Sedangkan pada tubuh yang bersifat asam justru sebaliknya (lebih mudah terserang penyakit).

Berikut derajat keasaman atau pH pada beberapa bagian tubuh yang bisa Anda ketahui beserta fungsinya:

  1. Mulut : pH atau derajat keasaman pada mulut biasanya dilihat pada air liur. Adapun pH air liur berkisar antara 6,5 sampai 7,5 atau sedikit asam sampai netral. Keseimbangan pH ini diperlukan agar enzim yang berperan dalam proses pencernaan di mulut yakni enzim amilase dan ptialin dapat bekerja secara optimal.
  2. Perut : pH cairan di perut cenderung bersfat asam yakni sekitar pH 4 sampai 6 untuk perut bagian atas, dan pH 1,5 sampai 3 untuk perut bagian bawah. Kondisi ini disebabkan oleh kandungan HCl atau asam klorida di dalam lambung yang berfungsi agar enzim pepsin dapat bekerja.
  3. Usus : derajat keasaman pada usus cenderung bernilai netral atau asam yakni sekitar pH 5 sampai 7.

Sebagaimana fungsi air yang kita konsumsi adalah untuk mengeluarkan racun dari dalam tubuh (saat proses sekresi cairan) sehingga kita perlu mengkonsumsi air yang bersifat netral dengan pH 7 sampai 8,5. Jangan mengkonsumsi air yang derajat keasamannya di bawah 6,5 karena tidak baik bagi tubuh.

Bahaya Tubuh yang Terlalu Asam

Umumnya, cairan tubuh kita memiliki derajat pH yang normal atau cenderung basa. Namun karena pengaruh hal-hal tertentu tubuh derajat keasaman larutan tubuh bisa berubah menjadi terlalu basa atau terlalu asam. Tetapi, kondisi tubuh yang terlalu basa memang jarang terjadi, sedangkan yang sering terjadi ialah kondisi terlalu asam. Tubuh mungkin akan segera melakukan proses penanganan secara otomatis melalui sistem metabolisme untuk kembali menetralkan asam tubuh. Tapi suatu waktu tubuh tidak bisa juga terus menangani masalah ini padahal tubuh kita sendiri tidak bisa mentolerir kondisi asam dalam waktu yang lama karena akan membahayakan kesehatan. Salah satu penyebab kondisi tubuh terlalu asam ialah jenis makanan, gaya hidup, dan diit yang salah.

Asiodosis; yakni saat tubuh mengalami kondisi terlalu asam, menyebabkan terjadinya penumpukan CO2 atau karbondioksida di dalam tubuh yang menyebabkan seseorang menjadi kesulitan bernapas karena penumpukan karbon dioksida dalam darah justru mengurangi kadar oksigen yang sangat diperlukan.  Hal ini sekaligus menyebabkan tubuh menjadi kelelahan, sakit kepala, nyeri, kulit melepuh, flu dan pilek, serta masalah sinus. Bahkan, jika kondisi ini didiamkan terlalu lama bisa sampai menyebabkan kerusakan pada sel-sel tubuh dan akhirnya terjadi kematian.

Makanan olahan yang tidak sehat, terlalu manis, minuman beralkohol, garam, obat-obatan, dan daging bisa menyebabkan tingkat keasaam tubuh meningkat. Tidak hanya makanan, stres juga bisa menyebabkan keasaman pada tubuh. Termasuk kondisi kurang tidur, kurang olahraga, dan peristiwa atau kejadian yang mengundang tekanan terlalu besar dapat memicu terjadi gangguan pada derajat keasaman tubuh yang menyebabkan tubuh cenderung bersifat asam.

Salah satu cara untuk menetralisir tubuh yang terlalu asam ialah dengan minum.  Bisa juga dengan mengubah gaya hidup menjadi lebih sehat dengan tidak sering memakan jajanan yang tidak higienis serta memperbaiki cara diet.

Bahaya Tubuh yang Bersifat Basa

Kondisi ini memang jarang terjadi tapi bisa saja menimpa siapapun pada suatu waktu. Kondisi tubuh dimana kadar pH cenderung meningkat dan menyebabkan tubuh kelebihan basa disebut alkalosis. Hal ini sering dipicu oleh penurunan konsentrasi ion hidrogen. Alkalosis ada dua; pernapasan dan metabolik.

Alkalosis pernapasan menyebabkan terjadinya hiperventilasi yang membuat kadar karbondioksida dalam darah berkurang dari kebutuhan normal. Sementara Alkalosis metabolik biasanya terjadi karena kehilangan asam klorida dalam perut akibat misalnya muntah. Tubuh yang bersifat basa ditandai dengan kram dan kelemahan otot dan sembelit. Salah satu bahaya alkalosis ialah terjaidnya hipokalemia; kondisi tubuh kekurangan gula.

Seseorang yang tubuhnya terlalu basa cenderung mengalami masalah dalam pernapasan. Untuk itu, perlu berlatih bagaimana cara mengatur napas yang baik dan benar. Belajar cara atau teknik bernapas agar tidak terlalu cepat sehingga bisa mengontrol karbon dioksida yang dikeluarkan.

Mekanisme tubuh menyesuaikan pH terhadap makanan yang masuk

Saat kita makan makanan asam, secara kimiawi, akan banyak ion H+  yang masuk ke dalam tubuh. Masuknya H+ ini yang membuat pH darah di tubuh kita menjadi turun (asam). Beruntung kita punya senyawa penyangga di dalam darah yang mampu mengikat H+ sehingga pH darah kita kembali stabil.

Adapun reaksi kimia yang terjadi antara senyawa penyangga HCO3 dengan H+ adalah sebagai berikut:

reaksi kimia asam dengan senyawa penyangga

Lalu bagaimana kalau kita mengonsumsi makanan atau minuman yang mengandung basa? Hal ini tentu akan meningkatkan pH darah dan membuatnya menjadi basa dong. Eits, jangan takut. Masuknya ion OH dari makanan/minuman basa tadi juga akan ditangkap oleh senyawa penyangga. Berikut reaksi kimianya:

reaksi kimia basa dengan senyawa penyangga

Kenapa yang bertugas menangkap H+ itu HCO3 sementara yang menangkap OH itu H2CO3

Senyawa penyangga yang bereaksi dengan ion H+ selalu senyawa basa (HCO3), dan yang bereaksi dengan OH- adalah senyawa penyangga asam ( H2CO3 ).

Selain penyangga yang ada di darah, di dalam sel di tubuh kita juga ada senyawa penyangganya. Adapun senyawa penyangganya adalah H2PO4 (asam) dan HPO42-(basa konjugasi). Sama halnya dengan senyawa yang ada di dalam darah, apabila ada makanan asam (H+) yang masuk ke dalam tubuh, maka akan diikat oleh senyawa penyangga basa konjugasi (HPO42-). Sebaliknya, apabila ada makanan/minuman yang mengandung basa masuk ke dalam sel, maka akan ditangkap oleh senyawa penyangga asam (H2PO4).

Adapun reaksi untuk mengikat asam di dalam sel:

reaksi kimia asam di dalam sel dengan senyawa penyangga

Sementara yang mengikat basa di dalam sel:

reaksi kimia basa dengan senyawa penyangga di dalam sel

Bayangkan jika tidak ada senyawa penyangga di dalam tubuh kita. Baik di darah, maupun di dalam sel. Tahu, kan, bahayanya zat asam tinggi di dalam tubuh?

Tubuh kita hanya dapat memproses sejumlah asam, sehingga sangat mungkin untuk tubuh menjadi terlalu asam. Daging termasuk daging sapi, babi, ayam dan kalkun adalah asam. Produk seperti susu, mentega dan keju juga asam. Biji-bijian seperti beras, kentang, pasta dan roti, juga asam. Kopi, teh, dan softdrink merupakan asam kuat. Produk- produk makanan meningkatkan keasaman dan menyebabkan pengendapan banyak penyakit.

Tingkat pH adalah seimbang dalam tubuh kita. Untuk mencapai dan menjaga kesehatan yang optimal darah dan jaringan diseluruh tubuh kita harus tetap alkali. Namun dalam terus-menerus tubuh kita membuat produk sampingan berupa asam dari setiap proses metabolisme dalam tubuh kita seperti pernapasan, pencernaan, produksi energi. Jadi tubuh kita terus-menerus bekerja untuk menjaga homeostasis asam dan basa tubuh. Ketika keseimbangan asam-basa ini tidak dapat dipertahankan peningkatan keasaman adalah penyebab utama dari kondisi sakit dari tubuh kita.

Dalam keadaan normal, tubuh menggunakan dua metode untuk melawan asidosis metabolik dan mempertahankan pH darah dalam kisaran 7,35-7,45. Salah satufaktor yang dapat menyebabkan asidosis metabolik adalah penumpukan karbon dioksida(CO2) dalam darah. Paru-paru yang digunakan untuk melawan kelebihan CO2, yang biasanya dihasilkan oleh proses metabolisme tubuh.Penyebab paling umum dari meningkatnya CO2 adalah olahraga dan tubuh merespon dengan meningkatkan laju pernapasan yang memungkinkan paru-paru untuk mengusir kelebihan CO2 dan mempertahankan keseimbangan pH darah. Asidosis metabolik yang disebabkan oleh diet ditandai dengan penumpukan ion hidrogen pembentuk asam dalam darah. Ginjal menanggapi ini dengan memproduksi bikarbonat (HCO3) yang dilepaskan ke aliran darah untuk melawan ion hidrogen. Ginjal juga dapat bertindak untuk menurunkan kadar ion hidrogen dalam darah dengan mengeluarkan melalui urin.

Kedua sistem ini bekerja sama menjaga agar pH tetap normal. Produk-produk dari kedua sistem bergabung membentuk asam karbonat (H2CO3) yang dapat dipecah untuk membentuk kedua ion hidrogen dan bikarbonat, berdasarkan apa yang dibutuhkan tubuh saat itu. Dalam tubuh yang sehat kedua sistem ini bekerja untuk menjaga keseimbangan pH darah.


MENGENAL LEBIH DEKAT : DESINFEKTAN PARACETIC ACID / ASAM PARASETAT ( PAA )

MENGENAL LEBIH DEKAT : DESINFEKTAN PARACETIC ACID

Posted by Widiantoko, R.K

Nama Kimia : Peroxyacetic Acid, Ethaneperoxic Acid

Nama Lain : Per Acid, Periacetic Acid, PAA

Rumus Molekul : C2H4O3

Peracetic acid adalah komponen organik dengan rumus molekul CH3CO3H. senyawa peroksida organik ini tidak berwarna dengan karakteristik berbau tajam mirip seperti asam asetat. Ini bersifat sangat korosif. Asam paraasetat mengandung asam diatas asam asetat dengan pKa sebesar 8,2.

KARAKTERISTIK 
Komposisi:
Asam perasetat adalah campuran asam asetat (CH3COOH) dan hidrogen peroksida (H2O2) dalam larutan berair. Asam asetat merupakan komponen prinsip cuka.

Sifat:
Peracetic acid adalah oksidator yang sangat kuat dan memiliki potensi oksidasi kuat dari klorin atau klorin dioksida. Berbentuk cairan, jelas, dan bening tidak berbuih. Peracetic acid memiliki bau menyengat sperti asam asetat, dan pH asam (2.8). Rapat massanya adalah 1.114 dan beratnya 9.28 lb per galon. PAA terbentuk oleh reaksi dari asam asetat dan hidrogen peroksida. Reaksi ini dianjurkan untuk berlangsung selama 10 hari untuk mencapai PAA yang tinggi sesuai ddengan persamaan berikut :

CH3COOH + H2O2 ↔ CH3COOOH + H2O

Karena keterbatasan reaksi, PAA dapat mencapai 15% dengan residu hidrogen peroksida (hingga 25%) dan asam asetat hingga 35% serta air mencapai 25%. Metode tambahan dari persiapan oksidasi asetal halid atau alternatf sebagai  produk akhir dari anhidrida asetat, hydrogen peroksida dan asam sulfat (budavari, 1996). Metode lain yaitu reaksi tetra asetil etilen diamin (TAED) dengaan adanya larutan basa hydrogen peroksida (davies and deary,1991). Beberapa sumber nampaknya sering menggunakannya dalam pembuatan pulp, kertas, dan tekstil (Pan, Spencer, and Leary, 1999).

Penggunaan utama asam perasetat dalam pengolahan makanan adalah sebagai pembersih pada permukaan makanan dan sebagai disinfektan untuk buah-buahan, sayuran, daging, dan telur (Evans, 2000). PAA juga dapat digunakan untuk disinfeksi diresirkulasi air flume (Lokkesmoe dan Olson, 1993). Kegunaan lain dari PAA termasuk menghilangkan deposito, bau menyengat, dan pengupasan  biofil dari permukaan kontak makanan (Blok, 1991; Mosteller dan Uskup 1993;. Marriot, 1999; Fatemi dan Frank 1999). Hal ini juga digunakan untuk memodifikasi pati makanan oleh oksidasi ringan dan digunakan sebagai pemutih (Food Chemicals Codex, 1996).

PAA / Paracetic acid merupakan desinfektan dengan range yang cukup lebar karena memiliki penghambatan terhadap gram + maupun gram -. mould maupun yeast serta aktif terhadap spora dan virus pada suhu ruang.

PAA dapat larut dalam lemak dan air, tidak terpengaruh pelemahan oleh sel enzim maupun bakteri sehingga sangat efektif sebagai microbicidal.

Saat dibandingkan dengan desinfektan lain seperti klorin karena tidak terpengaruh oleh keberadaan material / zat organik serta tidak membentuk hasil samping reaksi atau zat yang beracun kecuali dalam konsentrasi sangat rendah hingga bisa diabaikan.

Asam perasetat memiliki kemampuan oksidasi  yang efektif pada nilai pH asam meskipun desinfeksi sering dilakukan pada nilai pH netral, oleh karena itu diperlukan konsentrasi desinfektan yang semakin tinggi untuk menjamin efektivitas asam perasetat. Keefektifannya terhadap bakteri
pada konsentrasi  lebih rendah dari 100 mg / l dengan waktu kontak 5 menit; konsentrasi yang jauh lebih tinggi diperlukan untuk mendapatkan inaktivasi spora mulai dari 500 hingga 30,000 ppm untuk waktu kontak mulai dari 15 menit hingga 15 detik pada suhu lingkungan (Baldry., 1983). Untuk virucidal belum sepenuhnya dipelajari, tetapi tampaknya membutuhkan konsentrasi lebih tinggi dan dengan waktu kontak yang lebih lama bila dibandingkan untuk inaktivasi bakteri. Untuk inaktivasi virus dalam air demineralisasi dibutuhkan konsentrasi750 hingga 1500 ppm diperlukan dengan waktu kontak minimum 15 menit (Baldry et al., 1991).

Penggunaan secara luas dalam  disinfeksi CIP menggunakan 0,1-0,5% asam perasetat juga digunakan untuk menghilangkan atau setidaknya mengurangi pembentukan dari bakteri pada umumnya. Asam perasetat juga dapat digunakan untuk pengolahan limbah tersier hingga mengurangi atau benar-benar menonaktifkan bakteri kontaminasi feses (coliform total dan feses dan streptokokus fekal).

Kombinasi:
Asam perasetat biasanya terjadi dengan hidrogen peroksida dan asam asetat dalam larutan aqueous. Persiapan komersial mengandung stabilizer sintetis seperti 1- hydroxyethylidene-1,1-diphosphonic acid (HEDP) atau 2,6 – pyridinedicarboxylic (dipicolinic) asam untuk memperlambat laju oksidasi atau  dekomposisi (Kurschner dan Diken, 1997)

Menurut peraturan di dalam FDA, HEDP dapat digunakan dengan PAA pada tingkat yang tidak melebihi 4,8 ppm dalam air yang digunakan untuk mencuci  buah-buahan segar dan sayuran (21 CFR 173,315 (a) (5)).

Asam perasetat adalah salah satu microbiocides paling kuat yang tersedia dan aktif terhadap spektrum yang luas dari mikro-organisme termasuk bakteri aerobik dan anaerobik, spora bakteri, jamur, jamur khamir lainnya, dan juga ganggang.
• Cepat bereaksi
• tidak berbuih
• tidak menmbulkan polusi terhadap lingkungan
• Tidak perlu bilas setelah digunakan karena asam parasetat akan terdegradasi menjadi asam asetat, air dan oksigen.

Penggunaan Sterilisasi Basah PAA :

Sterilisasi adalah proses mematikan semua mikroorganisme termasuk bakteri, spora bakteri,kapang dan virus. Sterilisasi yang tidak baik dapat menghasilkan penyebaran infeksi bakteri dan virus seperti hepatitis dan HIV.

Perebusan bukanlah metode sterilisasi. Sterilisasi umumnya dilakukan menggunakan autoklaf untuk yang menggunakan panas bertekanan. Cara lain yang kini dikembangkan adalah sterilisasi basah untuk produk-produk yang tidak tahan panas.

Teknologi pengemasan aseptik untuk minuman yang sensitif terhadap asam kini telah dikembangkan. Konsep aseptis ini menggunakan larutan PAA (peracetic acid) sebagai medium sterilisasi, isolator mikrobial untuk pengendali lingkungan, Sistem aseptik ini digunakan dalam sterilisasi botol PET yang sat ini banyak digunakan dalam industri minuman.

Dasar sterilisasi basah dengan PAA

  • Botol disterilkan dengan penyemprotan larutan PAA dengan botol menghadap ke bawah, PAA dan tampung untuk dapat digunakan kembali.
  • Botol dicuci dengan menyemprotkan air steil (botol menghadap ke bawah), air cucian ditampung untuk dapat digunakan kembali.
  • Kendalikam laju aliran semprotan, konsentrasi PAA, suhu dan tekanan.
  • Pengurangan mikroorganisme yang dilakukan dapat mencapai 6 log penurunan (6D)

Penggunaan PAA lebih baik daripada hidrogen peroksida karena lebih efektif terhadap kontaminan. Suhu yang umum digunakana dalah 65 C atau kurang jika produknya asam. Larutan PAA tidak bermigrasi ke dalam molekul PET selama sterilisasi sehingga digunakan sebagai alternatif pengganti hidrogen peroksida yang dapat bermigrasi ke dalam matrik PET.

PENYIMPANAN DAN DAYA TAHAN
∞ Simpan dalam kondisi dingin, jauh dari sinar matahari
∞ Simpan dalam wadah tertutup ketika tidak digunakan
∞ Simpan jauh dari bahan yang bersifat tidak kompatibel
∞ Bahaya dekomposisi jika produk tersebut dalam wadah tertutup atau sistem unvented
∞ suhu penyimpanan maksimum – 30 ° C
∞ suhu penyimpanan Rekomendasi – 15 ° C
∞  bahan yang tidak termasuk asam, basa, (zat pengoksidasi dan pereduksi) dan bahan mudah terbakar
∞ Kontak dengan kuningan, perunggu, tembaga, besi, timah, mangan, nikel, perak, seng dan logam katalitik lainnya mempercepat dekomposisi oksigen, gas dan panas. Oleh karena itu, bahan-bahan ini harus absen
dalam pompa transfer dan pipa. Kontak dari bahan terkonsentrasi dengan karet alam dan sintetis harus dihindari
∞ Salah satu bahan konstruksi direkomendasikan untuk stainless steel 304L, 316L, PTFE, PVDF dan kaca. PVC lunak dan polythene cocok untuk  jangka pendek
∞ daya tahan adalah selama 6 bulan dalam kondisi penyimpanan yang direkomendasikan. penyimpanan yang lama dapat mengakibatkan hilangnya kandungan asam perasetat

UPAYA PERTOLONGAN PERTAMA
Kontak Mata:
Periksa dan lepaskan contact lenses. segera basuh mata dengan air yang banyak minimal selama 15 menit. Air dingin dapat digunakan. Segera dapatkan perhatian medis.

Kontak pada Kulit:
Segera basuh kulit dengan air yang banyak minimal selama 15 menit sambil melepaskan pakaian yang terkontaminasi dan sepatu. Tutupi kulit yang teriritasi. Air dingin dapat digunakan. Cuci pakaian sebelum digunakan kembali. Bersihkan sepatu sebelum digunakan kembali. Dapatkan perhatian medis segera.

Penaganan serius : Cuci dengan sabun desinfektan dan tutupi kulit terkontaminasi dengan krim anti-bakteri. Carilah perhatian medis segera.

Terhirup:
Jika terhirup, segera cari udara segar. Jika kesulitan bernapas, berikan pernapasan buatan atau berikan oksigen. Dapatkan perhatian medis segera.

Penanganan serius:
Evakuasi korban ke daerah yang aman sesegera mungkin. Longgarkan pakaian yang ketat seperti kerah, dasi, ikat pinggang atau pinggang. Jika kesulitan  bernapas, berikan oksigen. Jika korban masih kritis, sadarkan dengan member  pernapasan buatan darii mulut ke mulut. PERINGATAN: Ini berbahaya bagi orang yang memberikan bantuan untuk memberikan mulut ke mulut ketika dihirup bahan beracun, infeksi atau korosif. Carilah perhatian medis segera.

Tertelan:
Jangan memaksakan muntah kecuali diarahkan oleh tenaga medis. Jangan pernah memberikan apapun melalui mulut kepada orang yang pingsan. Jika bahan ini tertelan dalam jumlah banyak, segera hubungi dokter. Longgarkan pakaian yang ketat seperti kerah, dasi, ikat pinggang atau pinggang.

TINDAKAN SEDERHANA
Tumpahan Kecil:
Encerkan dengan air dan mengepel, atau diserap dengan bahan kering bersifat inert dan tempatkan dalam wadah pembuangan limbah yang tepat. Jika perlu: Menetralisir residu dengan larutan encer natrium karbonat.

Tumpahan Banyak :
Cairan mudah terbakar. Pengoksidasi materi. Organik peroksida. Jauhkan dari panas. Jauhkan dari sumber api. Hentikan kebocoran jika tanpa risiko. Menyerap dengan pasir atau non-materi mudah terbakar. Hindari kontak dengan bahan yang mudah terbakar (kayu, kertas, minyak, pakaian …). Jauhkan lembab substansi
menggunakan semprotan air. Jangan gunakan alat logam atau peralatan. Jangan menyentuh bahan yang tumpah. Gunakan semprotan air untuk mengurangi uap.

Mencegah pemasukan ke selokan, ruang bawah tanah atau area yang terbatas, tanggul jika diperlukan. Meminta bantuan mengenai pembuangan. Menetralisir residu dengan larutan encer natrium karbonat. Hati-hati bahwa produk tidak hadir pada tingkat konsentrasi di atas NAB. Periksa NAB pada MSDS dan dengan pemerintah setempat.

 

Pustaka :

Anna McElhatton and Richard J. Marshall. 2006. FOOD SAFETY: A Practical and Case Study Approach.  University of Iceland.  Reykjavík, Iceland.


STRATEGI PENYIMPANAN ZAT DAN BAHAN KIMIA YANG BENAR DI LABORATORIUM UNTUK MENGURANGI RESIKO KECELAKAAN

STRATEGI PENYIMPANAN ZAT DAN BAHAN KIMIA YANG BENAR DI LABORATORIUM UNTUK MENGURANGI RESIKO KECELAKAAN

Created by : Widiantoko, R.K

PENDAHULUAN

Laboratorium kimia merupakan suatu tempat yang berbahaya, terutama bila kita ceroboh dan kurang pengetahuan. Kehati-hatian dan tidak buru-buru adalah syarat penting yang perlu dimiliki seseorang yang bekerja di laboratorium kimia. Gambaran ini disampaikan tidak dengan maksud untuk menakut-nakuti seseorang yang akan bekerja di laboratorium kimia, namun untuk mengingatkan agar kita senantiasa waspada bila sedang bekerja di dalamnya.

Laboratorium kimia merupakan sarana penting untuk pendidikan, penelitian, pelayanan, serta uji mutu atau quality control. Berbagai jenis laboratorium kimia telah banyak dimiliki oleh sekolah lanjutan atas (SMA dan SMK), perguruan tinggi, industri dan jasa serta lembaga penelitian dan pengembangan. Karena perbedaan fungsi dan kegunaannya, dengan sendirinya berbeda pula dalam desain, fasilitas, teknik, dan penggunaan bahan. Walaupun demikian, apabila ditinjau dari aspek keselamatan kerja, laboratorium-laboratorium kimia mempunyai bahaya dasar yang sama sebagai akibat penggunaan bahan kimia dan teknik di dalamnya. Laboratorium kimia harus merupakan tempat yang aman bagi para penggunanya.

Aman terhadap setiap kemungkinan kecelakaan fatal, dari sakit maupun gangguan kesehatan. Hanya dalam laboratorium yang aman seseorang dapat bekerja dengan aman, produktif, dan efisien, bebas dari rasa khawatir akan kecelakaan dan keracunan. Keadaan aman dalam laboratorium dapat diciptakan apabila ada kemauan dari setiap pengguna untuk menjaga dan melindungi diri. Diperlukan kesadaran bahwa kecelakaan dapat berakibat pada para pengguna, maupun orang lain serta lingkungan di sekitarnya. Ini adalah tanggung jawab moral dalam keselamatan kerja yang memegang peranan penting dalam pencegahan kecelakaan. Selain itu, disiplin setiap individu terhadap peraturan juga memberikan andil besar dalam keselamatan kerja. Kedua faktor penting tersebut bergantung pada factor manusianya, yang ternyata merupakan sumber terbesar kecelakaan di dalam laboratorium.

Saat mengelola bahan kimia laboratorium, tidak semua risiko bisa ditiadakan.Namun, keselamatan dan keamanan laboratorium ditingkatkan melalui penilaian risiko
berdasarkan informasi dan pengelolaan risiko yang cermat. Pengelolaan masa pakai
bahan kimia yang cermat tidak hanya meminimalkan risiko terhadap manusia dan
lingkungan, tetapi juga mengurangi biaya.

Tujuan keamanan laboratorium adalah menciptakan suasana laboratorium sebagai sarana belajar sains yang aman. Caranya adalah dengan meningkatkan pengetahuan praktisi sains (dosen, laboran, (maha)siswa) tentang keselamatan kerja, mengenal bahaya yang mungkin terjadi serta upaya penanganannya. Pengenalan sifat dan jenis bahan kimia akan memudahkan dalam cara penanganannya, yakni cara pencampuran, mereaksikan, pemindahan atau transportasi, dan penyimpanan. Pengetahuan tentang nama dan kegunaan alat dan bagaimana cara penggunaannya juga sangat penting. Misalnya alat-alat gelas harus diperiksa sebelum digunakan. Apakah ada yang retak, pecah, atau masih kotor. Dalam makalah ini akan diuraikan tentang bagaimana perawatan alat dan bahan praktikum kimia, bagaimana cara penyimpanannya sehingga kerusakan alat dan bahan-bahan kimia dapat dihindari, serta bahaya-bahaya yang ditimbulkan akibat penyimpanan dapat dicegah.

PEMBAHASAN

Adapun hal- hal yang penting dalam makalah ini mengenai strategi penyimpanan zat dan bahan kimia di dalam laboratorium adalah sebagai berikut:

A.     SUMBER-SUMBER KERUSAKAN BAHAN KIMIA

Tidak dapat dielakkan semua alat dan bahan lambat laun akan mengalami kerusakan karena dimakan usia, karena lamanya bahan- bahan tersebut, baik lama pemakaian maupun lama disimpan, atau disebabkan oleh keadaan lingkungan. Sumber-sumber kerusakan yang disebabkan keberadaan alat –alat dan bahan-bahan kimia di dalam lingkungannya dapat digolongkan menjadi tujuh golongan, yaitu sebagai berikut:

1.      Udara

Udara mengandung oksigen dan uap air. Bahan-bahan kimia yang sifatnya higroskopis harus disimpan di dalam botol yang dapat ditutup rapat. Bahan-bahan kimia semacam ini jika menyimpannya tidak benar, maka akan berair, bahkan dapat berubah menjadi larutan. Bahan-bahan yang mudah dioksidasi, dengan adanya oksigen di udara akan mengalami oksidasi. Misalnya bahan kimia Kristal besi(II) sulfat yang berwarna hijau muda, akan segera berubah menjadi besi(III) sulfat kristal berwarna coklat muda. Hal itu terjadi bila botol tempat penyimpanan tidak segera ditutup atau tidak rapat menutupnya.

2.      Cairan: air, asam, basa, cairan lainnya

Usahakan semua bahan kimia dalam keadaan kering. Tempatkan bahan dalam tempat yang kering. Bahan mudah rusak bila dibiarkan dalam keadaan basah. Bahan-bahan kimia harus disimpan dalam tempat yang kering. Apalagi bahan kimia yang reaktif terhadap air. Logam-logam seperti Na, K, dan Ca bereaksi dengan air menghasilkan gas H2 yang langsung terbakar oleh panas reaksi yang terbentuk. Zat-zat lain yang bereaksi dengan air secara hebat, seperti asam sulfat pekat, logam halideanhidrat, oksida non logam halide harus dijauhkan dari air atau disimpan dalam ruangan yang kering dan bebas kebocoran di waktu hujan. Kebakaran akibat zat-zat di atas tak dapat dipadamkan dengan penyiraman air. Cairan yang bersifat asam mempunyai daya merusak lebih hebat dari air. Asam yang sifatnya gas gas, misalnya asam klorida lebih ganas lagi. Sebab bersama udara akan mudah berpindah dari tempat asalnya. Cara yang paling baik adalah dengan mengisolir asam itu sendiri, misalnya menempatkan botol asam yang tertutup rapat dan ditempatkan dalam lemari khusus, atau di lemari asam.

3.      Mekanik

Bahan-bahan kimia yang harus dahindarkan dari benturan maupun tekanan yang besar adalah bahan kimia yang mudah meledak, seperti ammonium nitrat, nitrogliserin, trinitrotoluene (TNT).

4.      Sinar

Sinar, terutama sinar ultra violet (UV) sangat mempengaruhi bahan-bahan kimia. Sebagai contoh larutan kalium permanganat, apabila terkena sinar UV akan mengalami reduksi, sehingga akan merubah sifat larutan itu. Oleh karena itu untuk menyimpan larutan kalium permanganat dianjurkan menggunakan botol yang berwarna coklat. Kristal perak nitrat juga akan rusak jika terkena sinar UV, oleh sebab itu dalam penyimpanan harus dihindarkan dari pengaruh sinar UV. Alat-alat sebaiknya juga dihindarkan terkena sinar matahari secara langsung, sehingga dianjurkan untuk memasang tirai-tirai pada jendela laboratorium.

5.      Api

Api/kebakaran dapat terjadi bila tiga komponen berada bersama-sama pada suatu saat,
dikenal dengan “segitiga api”.

Ketiga komponen itu ialah:

a. Adanya bahan bakar (bahan yang dapat dibakar)

b. Adanya panas yang cukup tinggi, yang dapat mengubah bahan baker menjadi uap yang dapat terbakar (mencapai titik bakarnya)

c. Adanya oksigen (di udara, di sekitar kita)

Maka pada saat yang demikian itulah, oksigen yang mudah bereaksi dengan bahan bakar yang berupa uap yang sudah mencapai titik bakarnya akan menghasilkan api. Api inilah yang selanjutnya dapat mengakibatkan kebakaran. Maka untuk menghindari terjadinya kebakaran haruslah salah satu dari komponen segitiga api tersebut harus ditiadakan. Cara termudah ialah menyimpan bahan-bahan yang mudah terbakar di tempat yang dingin, sehingga tidak mudah naik temperaturnya dan tidak mudah berubah menjadi uap yang mencapai titik bakarnya.

6.      Sifat bahan kimia itu sendiri

Bahan-bahan kimia mempunyai sifat khasnya masing-masing. Misalnya asam sangat mudah bereaksi dengan basa. Reaksi-reaksi kimia dapat berjalan dari yang sangat lambat hingga ke yang spontan. Reaksi yang spontan biasanya menimbulkan panas yang tinggi dan api. Ledakan dapat terjadi bila reaksi terjadi pada ruang yang tertutup.  Contoh reaksi spontan: asam sulfat pekat yang diteteskan pada campuran kalium klorat padat dan gula pasir seketika akan terjadi api. Demikian juga kalau kristal kalium permanganate ditetesi dengan gliserin.

B.     PENYIMPANAN BAHAN-BAHAN KIMIA

Mengingat bahwa sering terjadi kebakaran, ledakan, atau bocornya bahan-bahan
kimia beracun dalam gudang, maka dalam penyimpanan bahan-bahan kimia selain
memperhatikan ketujuh sumber-sumber kerusakan di atas juga perlu diperhatikan factor
lain, yaitu:

a.       Interaksi bahan kimia dengan wadahnya., bahan kimia dapat berinteraksi dengan

wadahnya dan dapat mengakibatkan kebocoran.

b.      Kemungkinan interaksi antar bahan dapat menimbulkan ledakan, kebakaran, atau

timbulnya gas beracun

Dengan mempertimbangkan faktor-faktor di atas , beberapa syarat penyimpanan bahan secara singkat adalah sebagai berikut:

1.      Bahan beracun

Banyak bahan-bahan kimia yang beracun. Yang paling keras dan sering dijumpai di laboratorium sekolah antara lain: sublimate (HgCl2), persenyawaan sianida, arsen, gas karbon monoksida (CO) dari aliran gas.

Syarat penyimpanan:

  ruangan dingin dan berventilasi

   jauh dari bahaya kebakaran

  dipisahkan dari bahan-bahan yang mungkin bereaksi

  kran dari saluran gas harus tetap dalam keadaan tertutup rapat jika tidak sedang dipergunakan

  disediakan alat pelindung diri, pakaian kerja, masker, dan sarung tangan

2.      Bahan korosif

Contoh bahan korosif, misalnya asam-asam, anhidrida asam, dan alkali. Bahan ini dapat merusak wadah dan bereaksi dengan zat-zat beracun. Syarat penyimpanan:

  ruangan dingin dan berventilasi

   wadah tertutup dan beretiket

  dipisahkan dari zat-zat beracun.

3.      Bahan mudah terbakar

Banyak bahan-bahan kimia yang dapat terbakar sendiri, terbakar jika kena udara, kena benda panas, kena api, atau jika bercampur dengan bahan kimia lain. Fosfor (P) putih, fosfin (PH3), alkil logam, boran (BH3) misalnya akan terbakar sendiri jika kena udara. Pipa air, tabung gelas yang panas akan menyalakan karbon disulfide (CS2). Bunga api dapat menyalakan bermacam-macam gas. Dari segi mudahnya terbakar, cairan organic dapat dibagi menjadi 3 golongan yaitu:

a)      Cairan yang terbakar di bawah temperatur -4oC, misalnya karbon disulfida (CS2), eter (C2H5OC2H5), benzena (C5H6, aseton (CH3COCH3).

b)       Cairan yang dapat terbakar pada temperatur antara -4oC – 21oC, misalnya etanol (C2H5OH), methanol (CH3OH).

c)      Cairan yang dapat terbakar pada temperatur 21oC – 93,5oC, misalnya kerosin

(minyak lampu), terpentin, naftalena, minyak baker.

Syarat penyimpanan:

a)      temperatur dingin dan berventilasi

b)       jauhkan dari sumber api atau panas, terutama loncatan api listrik dan bara rokok

c)      tersedia alat pemadam kebakaran

4.      Bahan mudah meledak

Contoh bahan kimia mudah meledak antara lain: ammonium nitrat, nitrogliserin, TNT.

Syarat penyimpanan:

  ruangan dingin dan berventilasi

  jauhkan dari panas dan api

  hindarkan dari gesekan atau tumbukan mekanis

Banyak reaksi eksoterm antara gas-gas dan serbuk zat-zat padat yang dapat meledak dengan dahsyat. Kecepatan reaksi zat-zat seperti ini sangat tergantung pada komposisi dan bentuk dari campurannya. Kombinasi zat-zat yang sering meledak di laboratorium pada waktu melakukan percobaan misalnya:

  natrium (Na) atau kalium (K) dengan air

   ammonium nitrat (NH4NO3), serbuk seng (Zn) dengan air

   kalium nitrat (KNO3) dengan natrium asetat (CH3COONa)

   nitrat dengan eter

   peroksida dengan magnesium (Mg), seng (Zn) atau aluminium (Al)

  klorat dengan asam sulfat

  asam nitrat (HNO3) dengan seng (Zn), magnesium atau logam lain

   halogen dengan amoniak

  merkuri oksida (HgO) dengan sulfur (S)

  Fosfor (P) dengan asam nitrat (HNO3), suatu nitrat atau klorat

5.      Bahan Oksidator

Contoh: perklorat, permanganat, peroksida organic

Syarat penyimpanan:

  temperatur ruangan dingin dan berventilasi

  jauhkan dari sumber api dan panas, termasuk loncatan api listrik dan bara rokok

  jauhkan dari bahan-bahan cairan mudah terbakar atau reduktor

6.      Bahan reaktif terhadap air

Contoh: natrium, hidrida, karbit, nitrida.

Syarat penyimpanan:

  temperatur ruangan dingin, kering, dan berventilasi

  jauh dari sumber nyala api atau panas

   bangunan kedap air

   disediakan pemadam kebakaran tanpa air (CO2, dry powder)

7.      Bahan reaktif terhadap asam

Zat-zat tersebut kebanyakan dengan asam menghasilkan gas yang mudah terbakar atau beracun, contoh: natrium, hidrida, sianida.

Syarat penyimpanan:

  ruangan dingin dan berventilasi

   jauhkan dari sumber api, panas, dan asam

  ruangan penyimpan perlu didesain agar tidak memungkinkan terbentuk

kantong-kantong hydrogen

 disediakan alat pelindung diri seperti kacamata, sarung tangan, pakaian kerja

8.      Gas bertekanan

Contoh: gas N2, asetilen, H2, dan Cl2 dalam tabung silinder.

Syarat penyimpanan:

  disimpan dalam keadaan tegak berdiri dan terikat

  ruangan dingin dan tidak terkena langsung sinar matahari

   jauh dari api dan panas

  jauh dari bahan korosif yang dapat merusak kran dan katub-katub

Faktor lain yang perlu dipertimbangkan dalam proses penyimpanan adalah lamanya waktu pentimpanan untuk zat-zat tertentu. Eter, paraffin cair, dan olefin akan membentuk peroksida jika kontak dengan udara dan cahaya. Semakin lama disimpan akan semakin besar jumlah peroksida. Isopropil eter, etil eter, dioksan, dan tetrahidrofuran adalah zat yang sering menimbulkan bahaya akibat terbentuknya peroksida dalam penyimpanan. Zat sejenis eter tidak boleh disimpan melebihi satu tahun, kecuali ditambah inhibitor. Eter yang telah dibuka harus dihabiskan selama enam bulan.

Penyimpanan Bahan Kimia

Ikuti panduan umum ini saat menyimpan bahan kimia dan peralatan bahan kimia:

1.      Sediakan tempat penyimpanan khusus untuk masing-masing bahan kimia dan kembalikan bahan kimia ke tempat itu setelah digunakan.

2.      Simpan bahan dan peralatan di lemari dan rak khusus penyimpanan.

3.      Amankan rak dan unit penyimpanan lainnya. Pastikan rak memiliki bibir pembatas di bagian depan agar wadah tidak jatuh. Idealnya, tempatkan wadah cairan pada baki logam atau plastik yang bisa menampung cairan jika wadah rusak. Tindakan pencegahan ini utamanya penting di kawasan yang rawan gempa bumi atau kondisi cuaca ekstrem lainnya.

4.      Hindari menyimpan bahan kimia di atas bangku, kecuali bahan kimia yang sedang digunakan. Hindari juga menyimpan bahan dan peralatan di atas lemari. Jika terdapat sprinkler, jaga jarak bebas minimal 18 inci dari kepala sprinkler.

5.      Jangan menyimpan bahan pada rak yang tingginya lebih dari 5 kaki (~1,5 m).

6.      Hindari menyimpan bahan berat di bagian atas.

7.      Jaga agar pintu keluar, koridor, area di bawah meja atau bangku, serta area peralatan keadaan darurat tidak dijadikan tempat penyimpanan peralatan dan bahan.

8.      Labeli semua wadah bahan kimia dengan tepat. Letakkan nama pengguna dan tanggal penerimaan pada semua bahan yang dibeli untuk membantu kontrol inventaris.

9.      Hindari menyimpan bahan kimia pada tudung asap kimia, kecuali bahan kimia yang sedang digunakan.

10.  Simpan racun asiri (mudah menguap) atau bahan kimia pewangi pada lemari berventilasi. Jika bahan kimia tidak memerlukan lemari berventilasi, simpan di dalam lemari yang bisa ditutup atau rak yang memiliki bibir pembatas di bagian depan.

11.  Simpan cairan yang mudah terbakar di lemari penyimpanan cairan yang mudah terbakar yang disetujui.

12.  Jangan memaparkan bahan kimia yang disimpan ke panas atau sinar matahari langsung.

13.  Simpan bahan kimia dalam kelompok-kelompok bahan yang sesuai secara terpisah yang disortir berdasarkan abjad. Lihat Gambar di bawah ini untuk mendapatkan gambaran metode pengodean warna untuk penyusunan bahan kimia.

14.  Ikuti semua tindakan pencegahan terkait penyimpanan bahan kimia yang tidak sesuai.

15.  Berikan tanggung jawab untuk fasilitas penyimpanan dan tanggung jawab lainnya di atas kepada satu penanggung jawab utama dan satu orang cadangan. Kaji tanggung jawab ini minimal setiap tahun

Wadah dan Peralatan

Ikuti panduan khusus di bawah ini tentang wadah dan peralatan yang digunakan untuk menyimpan bahan kimia.

1.      Gunakan perangkat pengaman sekunder, seperti wadah pengaman (overpack), untuk menampung bahan jika wadah utama pecah atau bocor.

2.      Gunakan baki penyimpanan yang tahan korosi sebagai perangkat pengaman sekunder untuk tumpahan, kebocoran, tetesan, atau cucuran. Wadah polipropilena sesuai untuk sebagian besar tujuan penyimpanan.

3.      Sediakan lemari berventilasi di bawah tudung asap kimia untuk menyimpan bahan berbahaya.

4.      Segel wadah untuk meminimalkan terlepasnya uap yang korosif, mudah terbakar, atau beracun.

Penyimpanan Dingin

Penyimpanan bahan kimia, biologis dan radioaktif yang aman di dalam
lemari es, ruangan yang dingin, atau freezer memerlukan pelabelan dan penataan yang
baik. Manajer laboratorium menugaskan tanggung jawab untuk menjaga unit-unit ini
agar aman, bersih, dan tertata, serta mengawasi pengoperasiannya yang benar. Ikuti
panduan penyimpanan dingin ini:

1.      Gunakan lemari penyimpanan bahan kimia hanya untuk menyimpan bahan kimia. Gunakan pita dan penanda tahan air untuk memberi label lemari es dan freezer laboratorium. Lihat Tanda pada Toolkit yang disertakan untuk mengetahui contoh label penyimpanan dingin.

2.      Jangan menyimpan bahan kimia yang mudah terbakar dalam lemari es, kecuali penyimpanan bahan tersebut disetujui. Jika penyimpanan dalam lemari es diperlukan di dalam ruang penyimpanan bahan yang mudah terbakar, pilih lemari es tahan-ledakan. Jangan menyimpan oksidator atau bahan yang sangat reaktif dalam unit yang sama dengan bahan yang mudah terbakar.

3.      Semua wadah harus tertutup dan stabil. Perangkat pengaman sekunder, seperti baki plastik, penting untuk labu laboratorium kimia dan disarankan untuk semua wadah.

4.      Labeli semua bahan dalam lemari es dengan isi, pemilik, tanggal perolehan atau penyiapan, dan sifat potensi bahayanya.

5.      Tata isi berdasarkan pemilik, namun pisahkan bahan yang tidak sesuai. Tata isi dengan memberi label pada rak dan tempelkan skema penataan di luar unit.

6.      Setiap tahun, kaji semua isi dari masing-masing unit penyimpanan dingin. Buang semua bahan tidak berlabel, tidak diketahui, atau tidak diinginkan, termasuk bahan yang dimiliki oleh pegawai yang telah meninggalkan laboratorium.

Penyimpanan Cairan yang Mudah Terbakar dan Gampang Menyala

Cairan yang mudah terbakar dan gampang menyala di laboratorium hanya
boleh tersedia dalam jumlah terbatas. Jumlah yang diperbolehkan tergantung pada
sejumlah faktor, termasuk:

a.       konstruksi laboratorium;

b.      jumlah zona api dalam gedung;

c.       tingkat lantai tempat laboratorium berlokasi;

d.      sistem pelindungan api yang dibangun dalam laboratorium;

e.       adanya lemari penyimpanan cairan yang mudah terbakar atau kaleng keselamatan; dan jenis laboratorium (yaitu, pendidikan atau penelitian dan pengembangan).

Ikuti panduan ini untuk menyimpan cairan yang mudah terbakar dan gampang menyala:

1.      Jika tempatnya memungkinkan, simpan cairan yang gampang menyala dalam lemari penyimpanan bahan yang mudah terbakar.

2.      Simpan cairan gampang menyala di dalam wadah aslinya (atau wadah lain yang disetujui) atau dalam kaleng keselamatan. Jika memungkinkan, simpan cairan yang mudah terbakar yang berjumlah lebih dari 1 L dalam kaleng keselamatan.

3.      Simpan 55 galon (~208-L) drum cairan yang mudah terbakar dan gampang menyala dalam ruang penyimpanan khusus untuk cairan yang mudah terbakar.

4.      Jauhkan cairan yang mudah terbakar dan gampang menyala dari bahan oksidasi kuat, seperti asam nitrat atau kromat, permanganat, klorat, perklorat, dan peroksida.

5.      Jauhkan cairan yang mudah terbakar dan gampang menyala dari sumber penyulutan. Ingat bahwa banyak uap yang mudah terbakar lebih berat dibandingkan udara dan dapat menuju ke sumber penyulutan.

Penyimpanan Zat yang Sangat Reaktif

Periksa undang-undang gedung dan kebakaran internasional, regional, atau
lokal untuk menentukan jumlah maksimal bahan kimia yang sangat reaktif yang dapat
disimpan di dalam laboratorium. Ikuti panduan umum di bawah ini saat menyimpan zat
yang sangat reaktif.

1.      Pertimbangkan persyaratan penyimpanan setiap bahan kimia yang sangat reaktif sebelum membawanya ke dalam laboratorium.

2.      Baca MSDS atau literatur lainnya dalam mengambil keputusan tentang penyimpanan bahan kimia yang sangat reaktif.

3.      Bawa bahan sejumlah yang diperlukan ke dalam laboratorium untuk tujuan jangka pendek (hingga persediaan 6 bulan, tergantung pada bahannya).

4.      Pastikan memberi label, tanggal, dan mencatat dalam inventaris semua bahan yang sangat reaktif segera setelah bahan diterima. Lihat Tanda pada Toolkit yang disertakan untuk mengetahui contoh label untuk zat yang sangat reaktif.

5.      Jangan membuka wadah bahan yang sangat reaktif yang telah melebihi tanggal kedaluwarsanya. Hubungi koordinator limbah berbahaya di lembaga Anda untuk mendapatkan instruksi khusus.

6.      Jangan membuka peroksida organik cair atau pembentuk peroksida jika ada kristal atau endapan. Hubungi CSSO Anda untuk mendapatkan instruksi khusus.

7.      Untuk masing-masing bahan kimia yang sangat reaktif, tentukan tanggal pengkajian untuk mengevaluasi kembali kebutuhan dan kondisi dan untuk membuang (atau mendaur ulang) bahan yang terurai dari waktu ke waktu.

8.      Pisahkan bahan berikut:

  agen pengoksidasi dengan agen pereduksi dan bahan mudah terbakar;

  bahan reduksi kuat dengan substrat yang mudah direduksi;

  senyawa piroforik dengan bahan yang mudah terbakar; dan

   asam perklorik dengan bahan reduksi.

9.      Simpan cairan yang sangat reaktif di baki yang cukup besar untuk menampung isi botol.

10.  Simpan botol asam perklorik dalam baki kaca atau keramik.

11.  Jauhkan bahan yang dapat diubah menjadi peroksida dari panas dan cahaya.

12.  Simpan bahan yang bereaksi aktif dengan air sejauh mungkin dari kemungkinan kontak dengan air.

13.  Simpan bahan yang tidak stabil karena panas dalam lemari es. Gunakan lemari es dengan fitur keselamatan ini:

a.       semua kontrol yang menghasilkan percikan di bagian luar;

b.      pintu terkunci magnetik;

c.       alarm yang memperingatkan jika suhu terlalu tinggi; dan

d.      suplai daya cadangan.

14.  Simpan peroksida organik cair pada suhu terendah yang mungkin sesuai dengan daya larut atau titik beku. Peroksida cair sangat sensitif selama perubahan fase. Ikuti panduan pabrik untuk penyimpanan bahan yang sangat berbahaya ini.

15.  Lakukan inspeksi dan uji bahan kimia pembentuk peroksida secara periodik dan beri bahan label akuisisi dan tanggal kedaluwarsa. Buang bahan kimia yang kedaluwarsa.

16.  Simpan bahan yang sangat sensitif atau simpan lebih banyak bahan eksplosif dalam kotak anti ledakan.

17.  Batasi akses ke fasilitas penyimpanan.

Penyimpanan Bahan yang Sangat Beracun

Lakukan tindakan pencegahan berikut saat menyimpan karsinogen, toksin reproduktif, dan bahan kimia dengan tingkat toksisitas akut tinggi.

1.      Simpan bahan kimia yang diketahui sangat beracun dalam penyimpanan berventilasi dalam perangkat pengaman sekunder yang resisten secara kimia dan anti pecah.

2.      Jaga jumlah bahan pada tingkat kerja minimal.

3.      Beri label area penyimpanan dengan tanda peringatan yang sesuai.

4.       Batasi akses ke area penyimpanan.

5.      Pelihara inventaris untuk semua bahan kimia yang sangat beracun

C.    MANAJEMEN BAHAN KIMIA DAN PENYIMPANANNYA DI GUDANG LABORATORIUM

Untuk memenuhi kriteria laboratorium yang sehat maka pengelolaan inventori bahan kimia diupaykan senantiasa terkendali dalam aspek kualitas yaitu mutu bahan kimia harus memenuhi spesifikasi standard yang diperlukan, aspek kuantitas yaitu jumlah yang akan dibeli harus sesuai dengan kebutuhan dan dengan mempertimbangkan bahwa kepemilikan dalam jumlah besar juga memiliki konsekwensi menanggung biaya kelola potensi timbulan limbah apabila bahan kimia tersebut terkontaminasi atau mengalami degradasi mutu sehingga tidak dapat dipergunakan.

Bahan kimia yang baik harus memenuhi beberapa ketentuan umum yaitu :

a.       Mudah diperoleh yaitu proses pengadaan bahan kimia tidak berbelit serta waktu kedatangan atau tiba di gudang dalam waktu singkat.

b.      Konsep siap saji (just in time) merupakan pedoman yang menjadi kebutuhan terhadap pengadaan bahan kimia saat ini dimana selang waktu yang terlampau lama menyebabkan terjadinya permasalahan terhadap waktu pakai (expire date) dari beberapa bahan kimia tertentu.

c.       Mudah untuk disubsitusi yaitu bahan kimia yang dibeli memiliki beberapa alternatif nama dagang sehingga bukan merupakan monopoli dari pabrik tertentu.

d.       Aman terhadap proses penanganan (handling)

e.       Memiliki label atau identifikasi yang jelas tentang sifat dan karakteristik bahan kimia.

f.       Kemasan mampu untuk melindungi kualitas bahan terhadap perubahan kondisi lingkungan sehingga apabila terjadi variasi perubahan suhu tidak berpengaruh terhadap komposisi bahan kimia.

g.      Suhu penyimpanan yang dipersyaratkan mendekati suhu kamar (ambien) di Indonesia. Apabila merupakan bahan kimia Berbahaya dan Beracun (B3) maka identifikasi MSDS harus senantiasa diikutsertakan disertai sertifikat keaslian produk dari pabrik pembuat. Penyimpanan bahan kimia juga memiliki beberapa aturan dasar yang menjadi pedoman bagi laboratorium untuk memelihara aspek safety dalam hal penyimpanan bahan kimia di gudang melalui segregasi, yaitu :

a)      Bahan kimia bersifat korosif (asam kuat atau basa kuat);

b)       Bahan kimia bersifat mudah terbakar (flamable);

c)      Bahan kimia mudah bereaksi (reactive)

d)     Bahan kimia racun (toxic).

Penyimpanan bahan kimia di gudang adalah pengetahuan tentang ketidaksesuaian (incompatible) antara bahan kimia yang satu dengan yang lain. Tabel berikut menyatakan ketidaksesuaian antara bahan kimia yang satu dengan yang lain dan dipergunakan sebagai dasar pengaturan penyimpanan bahan kimia di gudang.

Bahan padatan lebih sulit bereaksi dibandingan dengan cairan karena kecepatan reaksi dengan bahan lain rendah (dalam kondisi kering) oleh karena itu dapat disusun

a. Sulfida harus dipisahkan jauh dengan asam

b. Senyawa sianida harus dipisahkan terhadap asam, terutama bentuk larutan asam

c. Bentuk kristal penol harus dipisahkan terhadap oksidator.

Sedangkan cairan lebih mudah bereaksi dengan bahan lain, oleh karena itu cairan harus disimpan di rak dengan maksimum ketinggian ukuran bahu orang dewasa, untuk larutan asam

a. Pisahkan antara asam organik dengan asam anorganik seperti asam asetat dengan
asam nitrat.

b. Pisahkan secara tersendiri asam perklorat (perchloric acid);

Cairan mudah terbakar, lebih dari 10 gallon cairan harus disimpan didalam lemari        safety atau dalam drum safety.

c. Khusus untuk bahan-bahan yang termasuk Oksidator dilakukan pengelolaanya   sebagai berikut:

1)      Jauhkan dari asam, basa, organik dan logam

2)      Simpan ditempat dingin

Akumulasi penyimpanan limbah dan bahan kimia kadaluarsa dilakukan dengan :

a)      Sedapat mungkin menyimpan cairan limbah bahan kimia dengan tingkat kesesuaiannya (compability).

b)      Jangan menumpuk lebih dari 55 gallon limbah cair bahan kimia  ini,seperempat jumlah dari daftar bahan kimia berbahaya (daftar P)

Bahan yang termasuk katagori Logam, dilakukan sesuai jenisnya :

a)      Logam reaktif (misalnya potasium, sodium) dan semua logam dalam bentuk serbuk harus disimpan didalam lemari khusus anti nyala (flamable cabinet).

b)      Logam air raksa (mercury) harus disimpan di kontainer yang tidak mudah pecah dengan diletakkan didalam almari khusus.

D. BAHAN KIMIA RAMAH LINGKUNGAN UNTUK SETIAP LABORATORIUM

Bahan kimia ramah lingkungan merupakan falsafah perancangan produk dan proses yang mengurangi atau meniadakan penggunaan dan terciptanya bahan berbahaya. Dua belas prinsip bahan kimia ramah lingkungan dalam daftar berikut bisa diterapkan ke semua laboratorium dan digunakan sebagai panduan untuk merancang dan melaksanakan eksperimen yang bijak.

Beberapa dari strategi ini dibahas secara terperinci dalam bagian berikut.

1. Mencegah Limbah

Pengurangan bahan yang digunakan di setiap langkah eksperimen penting untuk pencegahan limbah, serta untuk keselamatan dan keamanan laboratorium. Untuk mencegah limbah, ikuti strategi berikut:

1. Pikirkan cara penggunaan produk reaksi dan buat sejumlah keperluan saja.

2. Pikirkan biaya pembuatan dan penyimpanan bahan yang tidak dibutuhkan.

Dua belas prinsip bahan kimia ramah lingkungan

1. Cegah limbah. Rancang sintesis kimia yang tidak menyisakan limbah apa pun yang harus diolah atau dibersihkan.

2. Rancang bahan kimia dan produk yang lebih aman. Rancang produk kimia yang sangat efektif, namun hanya mengandung sedikit racun atau tidak sama sekali.

3. Rancang sintesis bahan kimia yang tidak terlalu berbahaya. Rancang sintesis untuk menggunakan dan menghasilkan zat dengan toksisitas rendah atau tidak beracun sama sekali bagi manusia dan lingkungan.

4. Gunakan bahan mentah yang dapat diperbarui. Hindari menghabiskan bahan mentah dan bahan mentah untuk industri. Bahan mentah untuk industri yang dapat diperbarui dibuat dari produk pertanian atau limbah dari proses lainnya. Bahan mentah untuk industri yang tidak dapat diperbarui ditambang atau terbuat dari bahan bakar fosil (yaitu, minyak tanah, gas alam, batu bara).

5. Gunakan katalis, bukan reagen stoikiometrik. Katalis digunakan dalam jumlah kecil dan dapat melakukan reaksi tunggal beberapa kali. Katalis tersebut sebaiknya reagen stoikiometrik, yang digunakan dalam jumlah berlebihan dan hanya bekerja sekali.

6. Hindari derivatif kimia. Derivatif menggunakan reagen tambahan dan menghasilkan limbah. Hindari menggunakan kelompok penghambat atau pelindung atau modifi kasi apa pun.

7. Maksimalkan ekonomi atom. Rancang sintesis sehingga produk akhir mengandung proporsi maksimal bahan awal. Hanya boleh ada sedikit, jika ada, atom yang terbuang.

8. Gunakan pelarut dan kondisi reaksi yang lebih aman. Hindari menggunakan pelarut, bahan pemisah, atau bahan kimia tambahan lainnya. Jika bahan ini diperlukan, gunakan bahan kimia yang tidak berbahaya.

9. Tingkatkan efi siensi energi. Jalankan reaksi kimia pada suhu ruang dan tekanan bila memungkinkan.

10. Rancang bahan kimia dan produk agar terurai setelah digunakan. Produk kimia yang terurai menjadi zat yang tidak berbahaya setelah digunakan tidak berakumulasi di lingkungan.

11. Analisis langsung (dalam waktu nyata) untuk menghindari polusi. Sertakan pemantauan dan kendali langsung (waktu nyata) dalam proses selama sintesis untuk membatasi atau menghilangkan pembentukan produk sampingan.

12. Batasi potensi terjadinya kecelakaan. Rancang bahan kimia dan bentuknya (padat, cair, atau gas) untuk meminimalkan potensi terjadinya kecelakaan akibat bahan kimia, termasuk ledakan, kebakaran, dan pelepasan ke lingkungan.

2. Menggunakan Pekerjaan Berskala Mikro

Metode pengurangan bahaya yang berhasil adalah melakukan reaksi kimia dan prosedur laboratorium lainnya dalam skala yang lebih kecil, atau berskala mikro. Dalam bahan kimia berskala mikro, jumlah bahan yang digunakan dikurangi menjadi 25 hingga 100 mg untuk zat padat dan 100 hingga 200 μL untuk cairan, dibandingkan jumlah biasa, yaitu 10 hingga 50 g untuk zat padat atau 100 hingga 500 mL untuk cairan. Penggunaan tingkat skala mikro menghemat berton-ton limbah dan jutaan dolar. Di samping itu, pekerjaan berskala mikro mengurangi bahaya kebakaran dan kemungkinan terjadinya kecelakaan serta tingkat keparahan kecelakaan yang memaparkan pegawai pada bahan kimia berbahaya.

3. Menggunakan Pelarut dan Bahan Lainnya yang Lebih Aman

Laboratorium lebih aman dan terjamin jika mereka mengganti dengan bahan
kimia yang tidak berbahaya, atau kurang berbahaya bila memungkinkan. Pertimbangkan
jalur sintetik dan prosedur alternatif untuk melakukan campuran reaksi. Ajukan
pertanyaan berikut saat memilih bahan reagen atau pelarut untuk prosedur eksperimen:

  Bisakah kita mengganti bahan ini dengan bahan lain yang memiliki potensi bahaya lebih kecil bagi pelaku eksperimen dan lainnya?

  Bisakah kita mengganti bahan ini dengan bahan yang mengurangi atau meniadakan limbah berbahaya serta biaya pembuangannya?

  Saat memilih pelarut organik, pertimbangkan beberapa faktor penting:

b.      Hindari pelarut yang terdaftar sebagai toksin produktif, polutan udara berbahaya, atau karsinogen tertentu.

c.       Pilih pelarut dengan nilai ambang batas yang relatif tinggi (TLV).

d.      Pelarut pengganti yang paling baik memenuhi kondisi berikut. Pelarut juga memiliki sifat fi sio-kimia (misalnya, titik didih, titik nyala, konstanta dielektrik) yang mirip dengan pelarut asli. Pertimbangkan manfaatnya bagi keselamatan, kesehatan, dan lingkungan serta biayanya.

4. Inventaris dan Pelacakan Bahan Kimia

Semua laboratorium harus mencatat semua inventaris bahan kimia yang
dimilikinya secara akurat. Inventaris adalah catatan, biasanya dalam bentuk basis-data,
bahan kimia dalam laboratorium dan informasi penting tentang pengelolaannya yang
tepat. Inventaris yang dikelola dengan baik meliputi bahan kimia yang didapat dari
sumber komersial dan yang dibuat di laboratorium, juga lokasi penyimpanan untuk
setiap wadah masing-masing bahan kimia. Inventaris membantu dalam pemesanan,
penyimpanan, penanganan, dan pembuangan bahan kimia, juga perencanaan darurat.

PENUTUP

Laboratorium kimia harus merupakan tempat yang aman bagi para penggunanya. Dalam hal ini seorang laboran memegang peranan penting dalam menciptakan suatu laboratorium yang aman. Dengan pengetahuan yang cukup tentang sifat-sifat bahan kimia yang ada di laboratorium seorang laboran dapat mengetahui bagaimana cara menangani bahan kimia tersebut, termasuk bagaimana cara menyimpan dengan baik dan aman. Memang bukan hanya faktor bahan kimia yang menyebabkan keadaan tidak aman, factor lain seperti ventilasi ruangan, almari asam, atau sistem pengaman gas tidak bekerja dengan baik keadaan akan menjadi lebih tidak aman. Pengetahuan tentang kegunaan alat, perawatan dan pemeliharaan alat juga penting untuk menjaga keawetan alat. Memang diperlukan suatu kerjasama dari berbagai pihak, baik dari para (maha)siswa, guru, dosen sebagai pengawas.

Dalam melakukan praktikum (maha)siswa juga dituntut untuk berhati-hati, tidak menganggap remeh setiap kemungkinan bahaya yang ditimbulkan. Peran guru/dosen sebagai pengawas juga penting. Prosedur dan cara kerja perlu diberikan secara jelas dan sempurna sebelum dikerjakan oleh para (maha)siswa dan laboran. Dengan kerjasama yang sinergis dari berbagai pihak maka akan tercipta laboratorium kimia yang aman dan nyaman bagi semua orang yang menggunakannya.

DAFTAR PUSTAKA

Anwar, Chairil, dkk. (1996). Pengantar Praktikum Kimia Organik. Jakarta: Departemen Pendidikan dan Kebudayaan, DIKTI.

Djupri Padmawinata, Habiburrahman, Rangke L. Tobing, arosa Purwadi, S. Dirjosoemarto,

Iswojo PIA. 1983. Pengelolaan Laboratorium IPA. Jakarta: Departemen Pendidikan dan Kebudayaan, DIKTI.

Management Of Hazardous Waste In Your Area, akses
internet pada 6 Agustus 2006 : http://ehs.uky.edu/hmm/outline.htm

Soemanto Imamkhasani. 1990. Keselamatan Kerja dalam Laboratorium Kimia. Jakarta: Penerbit PT. Gramedia