“Allahumma tawwi umurana fi ta’atika wa ta’ati rasulika waj’alna min ibadikas salihina”

SENYAWA PANGAN

JENIS BAHAN PENGAWET DAN FUNGSINYA DALAM PENGOLAHAN PANGAN

JENIS BAHAN PENGAWET DAN FUNGSINYA DALAM PENGOLAHAN PANGAN

Bahan pengawet terdiri dari bahan pengawet organik dan anorganik dalam bentuk asam atau garamnya. Pengawet berfungsi untuk memperpanjang umur simpan produk makanan dan menghambat pertumbuhan mikroba. Oleh karena itu sering pula disebut senyawa anti mikroba (Winarno, 1989). Bahan pengawet anorganik diantaranya adalah sulfit, nitrit dan nitrat. Bahan pengawet organik meliputi asam asetat, asam propionat, asam benzoat, asam sorbat dan senyawa epoksida.

Bahan pengawet anorganik seperti sulfit, selain digunakan sebagai pengawet sering pula digunakan untuk mencegah reaksi browning pada bahan pangan. Nitrit dan nitrat biasanya digunakan untuk mengawetkan daging olahan untuk mencegah pertumbuhan mikroba dan menghasilkan warna produk yang menarik.

Bahan pengawet organik seperti asam sorbat, merupakan asam lemak monokarboksilat yang berantai lurus dan mempunyai ikatan tidak jenuh (α- diena). Bentuk yang biasa digunakan umumnya dalam bentuk garamnya seperti Na-sorbat dan K-sorbat. Pengawet ini digunakan untuk mencegah pertumbuhan kapang dan bakteri. Sorbat aktif pada pH diatas 6,5 dan keaktifannya menurun dengan meningkatnya pH.

Asam propionat (CH3CH2COOH) merupakan asam yang memiliki tiga atom karbon yang tidak dapat dimetabolisme oleh mikroba. Hewan tingkat tinggi dan manusia dapat memetabolisme asam propionat ini seperti asam lemak biasa. Penggunaan propionat biasanya dalam bentuk garam Na-propionat dan Ca-propionat. Bentuk efektifnya dalam bentuk yang tidak terdisosiasi, pengawet ini efektif terhadap kapang dan khamir pada pH diatas 5.

Asam asetat merupakan bahan pengawet yang dapat digunakan untuk mencegah pertumbuhan kapang, contohnya pertumbuhan kapang pada roti. Asam asetat tidak dapat mencegah pertumbuhan khamir. Asam asetat sebesar 4% kita kenal sebagai cuka dan aktivitasnya akan lebih besar pada pH rendah.

Epoksida merupakan senyawa kimia yang bersifat membunuh semua mikroba termasuk spora dan virus. Contoh senyawa epoksida adalah etilen oksida dan propilen oksida. Bahan pengawet ini digunakan sebagai fumigan terhadap bahan-bahan kering seperti rempah-rempah, tepung dan lain-lain. Etilen oksida lebih efektif dari propilen oksida, tetapi etilen oksida lebih mudah menguap, terbakar dan meledak, karena itu biasanya diencerkan dengan senyawa lain membentuk campuran 10% etilen oksida dan 90% CO2.

Bahan pengawet yang sering digunakan adalah Na-benzoat dengan rumus kimia C6H5COONa. Bahan pengawet ini sangat luas penggunaanya dan sering digunakan dalam bahan makanan berasam rendah untuk mencegah pertumbuhan bakteri dan khamir pada konsentrasi yang rendah yaitu dibawah 0,1 %. Benzoat juga telah banyak digunakan dalam pembuatan jam, jelly, margarin, minuman berkarbonasi, salad buah, acar, sari buah dan lain lain. Menurut Winarno (1989), aktifitas antimikroba dari benzoat akan mencapai maksimum pada pH 2,5-4,5 dengan bentuk asam tidak berdisosiasi. Apabila dilihat dari tingkat kelarutannya maka benzoat dalam bentuk garamnya yaitu Na-benzoat memiliki tingkat kelarutan yang lebih tinggi pada air dan etanol sehingga pada penelitian ini digunakan bentuk Na-benzoat. Na-benzoat berbentuk kristal putih, tanpa bau. Perlu di ketahui bahwa penambahan Na-benzoat dapat mempengaruhi rasa produk, sebab Na-benzoat memiliki rasa astringent. Seringkali dengan penambahan Na-benzoat dapat menimbulkan aroma fenol, yaitu seperti aroma obat cair. Apabila penambahan Na-benzoat melebihi 0,1 % maka sering kali menimbulkan rasa pedas dan terbakar.

Winarno (1989) menyatakan bahwa efektivitas dari Na-benzoat akan meningkat apabila ada penambahan senyawa belerang (SO2) atau senyawa sulfit (SO3) dan gas karbon (CO2). Efektivitas dari Na-benzoat dalam menghambat pertumbuhan mikroba meliputi jenis bakteri seperti Lactobacillus, Listeria, Kapang seperti Candida, Saccharomyces dan Khamir jenis Aspergillus, Rhyzopus dan Cladosphorium.

Legalitas dari penggunaan Na-benzoat digolongkan kedalam Generally Recognized As Safe (GRAS). Hal ini menunjukan bahwa penggunaanya memiliki toksisitas yang rendah terhadap hewan dan manusia. Hewan dan manusia memiliki mekanisme detoksifikasi benzoat yang efisien, sebab jika dikonsumsi 60-95 % dari senyawa ini akan dapat dikeluarkan oleh tubuh. Hingga saat ini benzoat dipandang tidak memiliki efek teratogenik (menyebabkan cacat bawaan) jika dikonsumsi dan tidak bersifat karsinogenik.

Iklan

KARBOHIDRAT

KARBOHIDRAT

 

Pendahuluan

Karbohidrat merupakan salah satu komponen pangan yang penting karena peranannya sebagai sumber energi utama bagi tumbuhan, hewan dan manusia. Karbohidrat terdapat dalam jaringan tumbuhan, hewan serta mikroorganisme dalam berbagai bentuk. Pada tanaman, karbohidrat diproduksi melalui jalur fotosintesis dimana klorofil pada tanaman dengan bantuan sinar matahari dan air dari tanah akan membentuk persenyawaan karbohidrat dan oksigen.

Karbohidrat pada tanaman ini terdapat dalam berbagai bentuk monosakarida, disakarida ataupun pati. Salah satu bentuk karbohidrat yang penting dalam menunjang struktur tumbuhan adalah selulosa. Bentuk karbohidrat lain yang bermanfaat terutama sebagai bahan tambahan dalam pengolahan pangan adalah gum yang diproduksi secara alami oleh tumbuhan, rumput laut dan selulosa. Pada hewan, karbohidrat terdapat dalam bentuk nutrisi yaitu glukosa dan cadangan makanan yaitu glikogen. Selain itu terdapat juga laktosa yaitu disakarida yang bisa ditemukan pada susu.

Pengertian dan Klasifikasi Karbohidrat

Karbohidrat (diambil dari kata” hidrat dari karbon”) adalah komponen organik dengan struktur dasar Cx(H2O)y. Secara kimia, karbohidrat mengandung elemen karbon, hidrogen dan oksigen dengan perbandingan 2:1 hidrogen terhadap oksigen. Dalam ilmu nutrisi pangan, karbohidrat yang paling penting peranannya adalah termasuk dalam kelompok heksosa (mengandung 6-atom karbon) dan pentosa (mengandung 5-atom karbon).

Secara umum karbohidrat diklasifikasikan atas dua golongan yaitu karbohidrat sederhana dan karbohidrat kompleks. Karbohidrat sederhana biasanya disebut gula sederhana dan dapat dibedakan menjadi:

  • Monosakarida
  • Disakarida
  • Oligosakarida
  • Gula alkohol


Karbohidrat Sederhana

  • Monosakarida

Kimia Monosakarida

Tata nama monosakarida tergantung dari gugus fungsional yang dimilikinya dan letak gugus hidroksilnya. Perbedaan dalam susunan atom inilah yang menyebabkan perbedaan dalam tingkat kemanisan, daya larut, dan sifàt lain monosakarida. Monosakarida mengandung satu gugus aldehid disebut sebagai aldosa, sedangkan ketosa adalah monosakarida yang mengandung gugus keton. Monosakarida dengan enam atom karbon disebut heksosa sedangkan yang mempunyai lima atom karbon disebut pentosa. Contoh gula pentosa yaitu xilosa, arabinosa dan ribose. Sedangkan Contoh gula heksosa antara lain glukosa, fruktosa dan galaktosa. Ketiga macam monosakarida ini mengandung jenis dan jumlah atom yang sama, yaitu 6 atom karbon, 12 atom hidrogen, dan 6 atom oksigen. Perbedaanya hanya terletak pada cara penyusunan atom-atom hidrogen dan oksigen di sekitar atom-atom karbon. Klasifikasi monosakarida berdasarkan gugus fungsional (aldosa dan ketosa) serta jumlah atom karbonnya dapat dilihat pada Table 2.2.

Klasifikasi karbohidrat


Penulisan rumus bangun molekul gula ada beberapa macam. Salah satu bentuk penulisan yang paling sederhana adalah menurut Fischer yang disebut Fischer projection formula. Penulisan rumus Fischer ini bisa juga disebut bentuk penulisan struktur terbuka. Contoh bentuk penulisan rumus Fischer beberapa monosakarida ini dapat dilihat pada gambar. berikut:


Seperti karbohidrat pada umumnya, monosakarida mengandung atom karbon kiral yaitu atom karbon yang mengikat empat gugus yang berbeda pada masing-masing lengannya, sehingga dapat membentuk bayangan cermin antara konfigurasi satu dengan yang lainnya. Sifat atom karbon inilah yang menjadi dasar pemberian tanda D dan L pada monosakarida. Huruf D yang terlihat pada nama gula seperti D-glukosa merupakan singkatan dan kata dekstro dan L dan kata levo. Biasanya huruf D atau L ditulis di depan nama gula sederhana. Bentuk L merupakan bayangan cermin dari bentuk D. Pemberian nama D atau L berdasarkan penulisan rumus bangun gliseraldéhida menurut Fischer. Bila gugus hidroksil pada karbon nomor 2 (di tengah) pada sebuah molekul gliseraldehida terletak sebelah kanan, dinamakan D dan bila berada di sebelah kiri dinamakañ L. Di alam, kebanyakan monosakarida terdapat dalam bentuk dektro, jarang sekali dalam bentuk levo, kecuali L-fukosa, L-arabinosa dan L-xilosa.


Selain tata nama dengan D- dan L- pada nama gula-gula sederhana, penulisan nama sering juga dituliskan dengan penambahan (+) dan (-). Contoh pada glukosa bisa dituliskan sebagai D(+)-glukosa. Penulisan seperti ini didasarkan pasa kemampuan dari monosakarida untuk memutar cahaya terpolarisasi. Meskipun D-glukosa dan D-fruktosa sama-sama mempunyai bentu dektro (D), tetapi terhadap cahaya terpolarisasi D-fruktosa bersifat pemutar kiri sedangkan bersifat D-glukosa pemutar kanan. Karena itu untuk lebih lengkapnya penulisannya adalah D(+)-glukosa dan D(-)-fruktosa.

Penulisan rumus bangun menurut Fischer dianggap kurang tepat menggambarkan monosakarida. Pada rumus Fischer digambarkan gugus aldehid bebas dan empat hidroksil sekunder yang aktif optic. Dalam kenyataanya penulisan monosakarida tidak sesuai dengan struktur ini, konfigurasi cincin yang melibatkan hemiasetal antara karbon 1 dan 5 lebih tepat menggambarkan struktur monosakarida. Hemiasetal merupakan suatu jembatan oksigen sehingga membentuk cincin yang melibatkan hidroksil (OH) dari karbon nomor 5. Cara penyajian struktur monosakarida inilah yang dikenal dengan cara penyajian Haworth. Struktur cincin Howorth yang terbentuk bila beranggotakan lima disebut furanosa; cincin anggota-enam disebut piranosa. Cincin seperti itu disebut heterosiklik karena satu anggotanya atom oksigen (heteroatom). Jika gugus mereduksi terlibat dalam struktur cincin hemiasetal, karbon 1 menjadi asimetrik dan ada dua isomer yang mungkin, keduanya disebut anomer. Contoh pada glukosa dikenal anomer α-D-glukosa dan β-D-glukosa


Posisi H dan OH pada karbon anomerik disebut α atau β ditentukan dengan mereaksikannya dengan asam borat; α -glukosa bereaksi dengan cepat sedang β -g1ukosa tidak mudah bereaksi dengan asam borat. Haworth berhasil menggambarkan rumus tersebut dalam bentuk perspektif dengan atom H dan hidroksil (OH) di atas atau di bawah bidang cincin yang letaknya tegak lurus pada permukaan kertas. Ikatan-ikatan digambarkan, tebal terletak di depan, sedang yang tipis di bagian be1akang. dapat pula dijelaskan cara pemberian symbol D dan L pada heksosa yang didasarkan pada letak karbon no 6.


Penulisan struktur cincin Haworth beberapa monosakarida dapat dilihat pada gambar berikut.



Penulisan struktur cincin Haworth beberapa monosakarida.

Selain cara penulisan Fischer dan Haworth tersebut, dikenal juga cara penulisan yang lain yaitu Conformational Formula atau biasa dikenal dengan konformasi kursi. Cara penulisan ini merupakan modifikasi dari penulisan Haworth, dimana pada penulisan konformasi kursi sudut ikatan lebih diperhatikan. Seperti pada penulisan Haworth, bentuk α yaitu bila gugus OH pada atom karbon no. 1 (C1) berada di bawah, sedangkan β bila gugus OH di atas bidang.

Nutrisi monosakarida

Glukosa, dinamakan juga dekstrosa atau gula anggur, terdapat luas di alam dalam jumlah sedikit, yaitu di dalam sayur, buah, sirup jagung, sari pohon, dan bersamaan dengan fruktosa dalam madu. Tubuh hanya dapat menggunakan glukosa dalam bentuk D. Glukosa murni yang ada di pasar biasanya diperoleh dan hasil olahan pati. Glukosa memegang peranan sangat penting dalam ilmu gizi. Glukosa merupakan hasil akhir pencernaan pati, sukrosa, makosa, dan laktosa pada hewan dan manusia. Dalam proses metabolisme, glukosa merupakan bentuk karbohidrat yang beredar di dalam tubuh dan di dalam sel merupakan sumber energi. Dalam keadaan normal sistem saraf pusat hanya dapat menggunakan glukosa sebagai sumber energi. Glukosa dalam bentuk bebas hanya terdapat dalam jumlah terbatas dalam bahan makanan. Glukosa dapat dimanfaatkan untuk diet tinggi energi. Tingkat kemanisan glukosa hanya separuh dan sukrosa, sehingga dapat digunakan lebih banyak untuk tingkat kemanisan yang sama.



Cara penyajian D-Glukosa dan D-Fruktosa

Fruktosa, dinamakan juga levulosa atau gula buah, adalah gula paling manis. Fruktosa mempunyai rumus kimia yang sama dengan glukosa, C6H1206, namun strukturnya berbeda. Susunan atom dalam fruktosa merangsang jonjot kecapan pada lidah sehingga menimbulkan rasa manis. Gula ini terutama terdapat dalam madu bersama glukosa, dalam buah, nektan bunga, dan juga di dalam sayur. Sepertiga dan gula madu terdini atas fruktosa. Fruktosa dapat diolah dan pati dan digunakan secara komersial sebagai pemanis. Minuman ringan banyak menggunakan sirup jagung-tinggi-fruktosa sebagai bahan pemanis. Di dalam tubuh, fruktosa merupakan hasil pencernaan sakarosa.


Galaktosa, tidak terdapat bebas di alam seperti halnya glukosa dan fruktosa, akan tetapi terdapat dalam tubuh sebagai hasil pencernaan laktosa.

Manosa, jarang terdapat di dalam makanan. Di gurun pasir, seperti di Israel terdapat di dalam manna yang mereka olah untuk membuat roti.

Pentosa merupakan bagian sel-sel semua bahan makanan alami. Jumlahnya sangat kecil, Sehingga tidak penting sebagai sumber energi. Ribosa dan deoksiribosa merupakan bagian asam nuldeat dalam inti sel. Karena dapat disintesis oleh semua hewan, ribosa dan deoksiribosa tidak merupakan zat gizi esensial.

  • Oligosakarida

Oligosakarida merupakan polimer dari monosakarida. Oligosakarida dapat berupa homo- atau hetero- polimer dari monosakarida yang terdiri dari dua atau sepuluh monosakarida yang bergabung melalui ikatan glikosidik. Oligosakarida yang terdiri dari dua molekul disebut disakarida, bila tiga molekul disebut triosa, dan seterusnya. Ikatan glikosidik yang banyak dijumpai adalah terjadi antara atom karbon anomerik atau atom karbon no. 1 (C1) dari monosakarida satu dengan karbon no. 4 (C4) dari monosakarida lainnya. Ikatan glikosidik yang terjadi umumnya pada karbon anomerik dengan karbon genap (2, 4, atau 6) dan jarang terjadi pada karbon ganjil (misal 3,5).


Ada tidaknya sifat pereduksi dan suatu molekul gula ditentukan oleh ada tidaknya gugus hidroksil (OH) bebas yang reaktif. Gugus hidroroksil yang reaktif pada glukosa (aldosa) biasanya terletak pada karbon nomor 1 (anomerik), sedangkan pada fruktosa (ketosa) hidroksil reaktifnya terletak pada karbon nomor dua.

Sukrosa tidak mempunyai gugus OH bebas yang reaktif karena keduanya sudah saling terikat, sedangkan laktosa mempunyai OH bebas pada atom C no. 1 pada gugus glukosanya. Karena itu, laktosa bersifat pereduksi sedangkan sukrosa bersifat nonpereduksi.


Sukrosa adalah oligosakarida yang mempunyai peran penting dalam pengolahan makanan dan banyak terdapat pada tebu, bit, siwalan, dan kelapa kopyor. Sukrosa atau sakarosa dinamakan juga gula tebu atau gula bit. Secara kornersial gula pasir yang 99% terdiri atas sukrosa dibuat dan kedua macam báhan makanan tersebut melalui proses penyulingan dan knistalisasi. Untuk industri-industri makanan biasa digunakan sukrosa dalam bentuk kristal halus atau kasar dan dalam jumlah yang banyak dipergunakan dalam bentuk cairan sukrosa (sirup). Pada pembuatan sirup, gula pasir (sukrosa) dilarutkan dalam air dan dipanaskan. Sebagian sukrosa akan terurai menjadi glukosa dan fruktosa, yang disebut gula invert. Inversi sukrosa terjadi dalam suasana asam, dimana dalam suasana asam sukrosa bersifat sangat labil dibandingkan oligosakarida yang lainnya sehingga gampang terhidrolisis. Gula invert secara alami terdapat di dalam madu dan rasanya lebih manis daripada sukrosa.

Sukrosa bersifat sangat mudah larut pada rentang suhu yang lebar. Hal inilah yang menjadikan sukrosa sebagai bahan pemanis yang baik untuk sirup dan makanan-makanan yang lain yang mengandung gula.



Maltosa (gula malt) tidak terdapat bebas di alam. Maltosa terbentuk pada setiap pemecahan pati, seperti yang terjadi pada tumbuh-tumbuhan bila benih atau bijian berkecambah dan di dalam usus manusia pada pencernaan pati. Dalam proses berkecambah, pati yang rerdapat dalam padi-padian pecah menjadi maltosa, untuk kemudian diuraikan menjadi unit-unit glukosa tunggal sebagai makanan bagi benih yang sedang tumbuh. Produksi bir terjadi bila maltosa difermentasi menjadi alkohol. Bila dicernakan atau dihidrolisis, maltosa pecah menjadi dua unit glukosa.

Laktosa (gula susu) hanya terdapat dalam susu dan terdiri atas satu unit giukosa dan satu unit galaktosa. Kadar laktosa pada susu sapi adalah 6,8 gram per 100 ml, sedangkan pada air susu ibu (ASI) 4,8 gram per 100 ml. Banyak orang, terutama yang berkulit betwarna (termasuk orang Indonesia) tidak tahan terhadap susu sapi, karena kekurangan enzim laktase yang dibentuk di dalam dinding usus dan diperlukan untuk pemecahan laktosa menjadi glukosa dan galaktosa. Kekurangan lactase ini menyebabkan ketidaktahanan tenhadap lakrosa. Lakrosa yang tidak dicerna tidak dapat diserap dan tetap tinggal dalam saluran pencernaan. Hal ini mempengaruhi jenis mikroorganisme yang tumbuh, yang menyebabkan gejala kembung, kejang perut, dan diare. Ketidaktahanan terhadap lakrosa lebih banyak tenjadi pada orang tua. Laktosa adalah gula yang rasanya paling tidak manis (seperenam manis glukosa) dan lebih sukar larut daripada disakarida lain.

Trebalosa seperti juga .maltosa, terdiri atas dua mol glukosa dan dikenal sebagai gula jamur. Sebanyak 15% bagian kering jamur terdiri aras trehalosa. Trehalosa juga terdapat dalam serangga.

Rafinosa, stakiosa, dan verbaskosa adalah oligosakarida yang terdiri atas unit-unit glukosa, fruktosa, dan galaktosa. Ketiga jenis oligosakarida ini terdapat di dalam biji tumbuh-tumbuhan dan kacang-kacangan serta tidak dapat dipecah oleh enzim-enzim pencernaan. Seperti halnya polisakarida nonpati, oligosakarida ini di dalam usus besar mengalami fermentasi.

Fruktan adalah sekelompok oligo dan polisakarida yang terdiri atas beberapa unit fruktosa yang terkait dengan satu molekul glukosa. Panjang rantai bisa sampai 3 hingga 50 unit, bergantung pada sumbernya. Fruktan terdapat di dalam serealia, bawang merah, bawang putih, dan asparagus. Fruktan tidak dicernakan secara berarti, sebagian besar di dalam usus besar difermentasi.

  • Gula Alkohol

Gula alkohol terdapat di alam dan dapat pula dibuat secara sintetis. Ada ernpat jenis gula alkohol yaim sorbitol, manitol, dulsirol, dan inositol.
Sorbitol terdapat di dalam beberapa jenis buah dan secara komersial dibuat dan glukosa. Enzim aldosa reduktase dapat mengubah gugus aldehida (CHO) dalam glukosa menjadi alkohol
(CH2OH) Struktur kimianya dapat dilihat pada Gambar 2.10. Sorbitol banyak digunakan dalam minuman dan makanan khusus pasien diabetes, seperti minuman ringan, selai dan kue-kue. Tingkat kemanisan sorbitol hanya 60% bila dibandingkan dengan sukrosa, diabsorpsi lebih lambat dan diubah di dalam hati menjadi glukosa. Pengaruhnya terhadap kadar gula darah lebih kecil daripada sukrosa. Konsumsi lebih dan lima puluh gram sehari dapat menyebabkan diare pada pasien diabetes. Sorbitol tidak mudah dimetabolisme oleh bakteri dalam mulut sehingga tidak mudah menimbulkan karies gigi. Oleh karena itu, sorbitol banyak digunakan dalam pembuatan permen karet.

Manitol dan dulsitol adalah alkohol yang dibuat dan monosakarida manosa dan galaktosa. Manitol terdapat di dalam nanas, asparagus, ubi jalar, dan wortel. Secara komersial manitol diekstraksi dan sejenis rumput laut. Kedua jenis alkohol mi banyak digunakan dalam industri pangan.

Inositol merupakan alkohol siklis yang menyerupai glukosa. Inositol terdapat dalam banyak bahan makanan, terutama dalam sekam serealia. Bentuk esternya dengan asam fitat menghambat absorpsi kalsium dan zat besi dalam usus halus.


Struktur kimia sorbitol dan manitol

  • Karbohidrat Kompleks
    Karbohidrat kompleks terdiri atas:
    (1) polisakarida yang terdiri atas lebih dan dua ikatan monosakanida.
    (2) serat yang dinamakan juga polisakanida nonpati.

Polisakarida

Karbohidrat kompleks mi dapat mengandung sampai tiga ribu unit gula sederhana yang tersusun dalam bentuk rantai panjang lurus atau bercabang. Gula sederhana mi terutama adalah glukosa. Jenis polisakarida yang penting dalam ilmu gizi adalah pati, dekstrin, glikogen, dan polisakanida nonpati.

Pati

Pati merupakan simpanan karbohidrat dalam tumbuh-tumbuhan dan rnerupakan karbohidrat utama yang dikonsumsi manusia di seluruh dunia. Pati terutama terdapat dalam padi-padian, biji-bijian, dan umbi-umbian. Beras, jagung, dan gandum mengandung 70— 80% pati; kacang-kacang kening, seperti kacang kedelai, kacang merah dan kacang hijau 30—60%, sedangkan ubi, talas, kentang, dan singkong 20—30%.

Secara kimia pati merupakan homopolimer dari glukosa dengan ikatan α-glikosidik. Berbagai macam pati tidak sama sifatnya tergantung dari panjang rantai karbonnya dan percabangan pada rantai molekulnya. Pati terdiri dari dua macam fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut sebagai amilosa merupakan fraksi linear dengan ikatan α(1,4)-D-glukosa. Sedangkan amilopektin merupakan fraksi tidak terlarut yang memiliki rantai molekul yang bercabang dengan ikatan α(1,4)-D-glukosa


Molekul pati (amilosa dan amilopektin).

Amilopektin memiliki susunan bercabang dengan 15—30 unit glukosa pada tiap cabang. Rantai glukosa tersebut terikat satu sama lain melalui ikatan alfa yang dapat dipecah dalam proses pencernaan.

Komposisi amilosa dan amiopektin berbeda dalam pati berbagai bahan makanan. Amiopektin pada umumnya terdapat dalam jumlah lebih besar. Sebagian besar pati mengandung antara 15% dan 35% amilosa. Pada beras semakin kecil kandungan amilosa atau semakin tinggi kandungan amiopektinnya, semakin pulen (lekat) nasi yang diperoleh. Berdasarkan kadar amilopektinnya beras dapat dibedakan menjadi empat golongan yaitu: (1) beras dengan kadar amilosa tinggi (25-33%); beras dengan kadar amilosa menengah (20-25%); (3) beras dengan kadar amilosa rendah (9-20%); dan beras yang memiliki kadar amilosa yang sangat rendah (<9%) contohnya beras ketan hampir tidak mengandung amilosa (1—2%).

Sifat-sifat Pati

a. Gelatinisasi

Secara fisik karakteristik granula pati berbeda antara tanaman yang satu dengan yang lainnya. Gambar menunjukkan beberapa bentuk granula pati yang dapat terlihat dengan mikroskop. Jumlah unit glukosa dan susunannya dalam satu jenis pati berbeda satu sama lain, bergantung jenis tanaman asalnya. Bentuk butiran pati ini berbeda satu sama lain dengan karakteristik tersendiri dalam hal daya larut, daya mengentalkan, dan rasa.


Penampakan granula beberapa pati

Bila pati dimasukkan dalam air dingin, granula pati akan menyerap air dan membengkak. Namun demikian jumlah air yang terserap dan pembengkakannya terbatas. Air yang terserap tersebut hanya dapat mencapai kadar 30%. Peningkatan volume granula pati yang terjadi dalam air pada suhu antara 55°C sampai 65°C merupakan pembengkak yang sesungguhnya, dan setelah pembengkakan ini granula pati dapat kembali pada kondisi semula. Granula pati dapat dibuat membengkak luar biasa, tetapi bersifat tidak dapat kembali lagi pada kondisi semula. Perubahan tersebut disebut gelatinasi. Suhu pada saat granula pati pecah disebut suhu gelatinisasi yang dapat dilakukan dengan penambahan panas. Air dapat ditambahkan dari luar seperti halnya pembuatan kanji dan puding, atau air yang ada dalam bahan makanan tersebut, misalnya air dalam kentang yang dipanggang atau dibakar.

Bila suspensi pati dalam air dipanaskan, beberapa perubahan selama terjadinya gelatinisasi dapat diamati. Mula-mula suspensi pati yang keruh seperti susu tiba-tiba mulai menjadi jemih pada suhu tertentu, tergantung jenis pati yang digunakan. Terjadinya translusi larutan pati tersebut biasanya diikuti pembengkakan granula. Bila energi kinetik molekul- molekul air menjadi lebih kuat daripada daya tarik-menarik antar molekul pati di dalam granula, air dapat masuk ke dalam butir-butir pati. Hal inilah yang menyebabkan bengkaknya granula tersebut. Indeks refraksi butir-butir pati yang membengkak itu mendekati indeks refraksi air dan hal inilah yang menyebabkan sifat translusen.

Karena jumlah gugus hidroksil dalam molekul pati sangat besar, maka kemampuan menyerap air sangat besar. Terjadinya peningkatan viskositas disebabkan air yang dulunya berada di luar granula dan bebas bergerak sebelum suspensi dipanaskan, kini sudah berada dalam butir-butir pati dan tidak dapat bergerak dengan bebas lagi.

Pati yang telah mengalami gelatinasi dapat dikeringkan, tetapi molekul-molekul tersebut tidak dapat kembali lagi ke sifat-sifatnya sebelum gelatinasi. Bahan yang telah kering tersebut masih mampu menyerap air kembali dalam jumlah yang besar. Sifat inilah yang digunakan agar instant rice dan instant pudding dapat menyerap kembali dengan mudah, yaitu dengan menggunakan pati yang telah mengalami gelatinisasi.

Suhu gelatinasi tergantung juga pada konsentrasi pati. Makin kental larutan, suhu tersebut makin lambat tercapai, sampai suhu tertentu kekentalan tidak bertambah, bahkan kadang-kadang turun. Konsentrasi terbaik untuk membuat larutan gel adalah 20%; makin tinggi konsentrasi, gel yang terbentuk makin kurang kental dan setelah beberapa waktu viskositas akan turun.

Suhu gelatinasi berbeda-beda bagi tiap jenis pati dan merupakan suatu kisaran. Dengan viskosimeter suhu gelatinasi dapat ditentukan, misa1nya pada jagung 62-70°C, beras 68-78°C, gandum 54,5-64°C, kentang 58-66°C, dan tapioka 52-64°C. Suhu ge1atinasi juga dapat ditentukan dengan polarized microscope. Granula pati mempunyai sifat merefleksikan cahaya terpolarisasi sehingga dibawah mikroskop terlihat seperti Kristal hitam dan putih. Sifat ini disebut sifat birefrigent. Waktu granula mulai pecah sifat ini akan menghilang. Kisaran suhu dimana 90% butir pati dalam air panas membengkak sedemikian rupa sehingga tidak dapat lagi kembali ke bentuk semula disebut Birefrigent End Point Temperature (BEPT).

Selain konsentrasi, pembentukan gel ini dipengaruhi pula oleh pH larutan. Pembentukan gel optimum pada pH 4-7. Bila pH terlalu tinggi, pembentukan gel makin cepat tercapai tapi cepat turun lagi, sedangkan bila pH terlalu rendah terbentuknya gel lambat dan bila pemanasan diteruskan, viskositas akan turun lagi. Pada pH 4-7 kecepatan pembentukan gel lebih lambat daripada pH 10, tapi bila pemanasan diteruskan, viskositas tidak berubah.

Penambahan gula juga berpengaruh pada kekentalan gel yang terbentuk. Gula akan menurunkan kekentalan, hal ini disebabkan gula akan mengikat air, sehingga pembengkakan butir-butir pati terjadi lebih lambat, akibatnya suhu gelatinasi lebih tinggi. Adanya gula akan menyebabkan gel lebih tahan terhadap kerusakan mekanik.

b). Retrogradasi dan Sineresis

Beberapa molekul pati, khususnya amilosa yang dapat terdispersi dalam air panas, meningkatkan granula-granula yang membengkak dan masuk ke dalam cairan yang ada di sekitarnya. Karena itu, pasta pati yang telah mengalami gelatinasi terdiri dan granula-granula yang membengkak tersuspensi dalam air panas dan molekul-molekul amilosa yang terdispersi dalam air. Molekul-molekul amilosa tersebut akan terus terdispersi, asalkan pasta pati tersebut tetap dalam keadaan panas. Karena itu dalam kondisi panas, pasta masih memiliki kemampuan untuk mengalir yang fleksibel dan tidak kaku.

Bila pasta tersebut kemudian mendingin, energi kinetik tidak lagi cukup tinggi untuk melawan kecenderungan molekul-molekul amilosa untuk bersatu kembali. Molekul-molekul amilosa berikatan kembali satu sama lain serta berikatan dengan cabang amilopektin pada pinggir-pinggir luar granula. Dengan demikian mereka menggabungkan butir pati yang membengkak itu menjadi semacam jaring-jaring membentuk mikrokristal dan mengendap. Proses kristalisasi kembali pati yang telah mengalami gelatinasi tersebut disebut retrogradasi. Sebagian besar pati yang telah menjadi gel bila disimpan atau didinginkan untuk beberapa hari atau minggu akan membentuk endapan kristal di dasar wadahnya.

Pada pati yang dipanaskan dan telah dingin kembali ini sebagian air masih berada di bagian luar granula yang membengkak. Air ini mengadakan ikatan yang erat dengan molekul-molekul pati pada pennukaan butir-butir pati yang membengkak; demikian juga dengan amilosa yang mengakibatkan butir-butir pati yang membengkak. Sebagian air pada pasta yang telah dimasak tersebut berada dalam rongga-rongga jaringan yang terbentuk dan butir pati dan endapan amilosa. Bila gel dipotong dengan pisau atau disimpan untuk beberapa hari, air tersebut dapat keluar dan bahan. Keluarnya atau merembesnya cairan dan suatu gel dari pati disebut sineresis (syneresis).

Mekanisme prilaku pati pada proses penggembungan, pelarutan dan peretrogradarian dapat dilihat pada berikut:

Mekanisme prilaku pati pada proses penggembungan, pelarutan dan peretrogradarian

c). Pemecahan Pati

Proses pemasakan pati di samping menyebabkan pembentukan gel juga akan melunakkan dan memecah sel, sehingga memudahkan pemecahan pati menjadi komponen-komponen yang lebih sederhana. Dalam proses pemecahan semua bentuk pati dihidrolisis menjadi glukosa. Pada tahap pertengahan akan dihasilkan dekstrin dan maltosa. Selain proses pemanasan tersebut, pemecahan pati dapat dlakukan secara enzimatis. Enzim-enzim yang terdapat pada tanaman yang dapat menhidrolisis pati adalah α -ami1ase, β-amilase, dan fosforilase.

Enzim β-amilase dapat memecah pati menjadi fraksi-fraksi yang lebih kecil, misalnya pemecahan amilosa menjadi fraksi kecil yang disebut maltosa, suatu disakarida dari glukosa. Bila β-amilase direaksikan terhadap pati biasa, hanya diperoleh 60% sampai 70% dan hasil dari maltosa teoretis. Bagian pati yang tidak terurai menjadi residu yang disebut β-amilase limit dextrin. Hal ini disebabkan karena ternyata β-amilase tidak mampu menghidrolisi amilopektin di luar batas cabang-cabang tertentu.

Dibandingkan β-amilase, kemampuan menhidrolisis α-ami1ase lebih baik. Enzim ini dapat menghidrolisis pati menjadi fraksi-fraksi molekul yang terdiri dari 6 sampai 7 unit glukosa.

Enzim fosforilase mampu memecah ikatan 1,4-glikosidik pati dengan bantuan asam atau ion fosfat, sedangkan amilase memerlukan molekul air.


Pati + PO43- α-D-glukosa-1-fosfat

Proses tersebut disebut proses fosforilasi, dan biasanya tidak disebut proses hidrolisis. Fosforilase dapat memecah aniilosa secara tuntas, tetapi bila substratnya amilpektin, di samping glukosa terbentuk dekstrin yang disebut “dekstrin tahan fosforilase” yang molekulnya mengandung cabang dengan ikatan α-1,6.

Dektrin merupakan produk antara pada pencernaan pati atau dibentuk melalui hidrolisis parsial pati. Dekstrin merupakan sumber utama karbohidrat dalam makanan lewat pipa (tube feeding). Cairan glukosa dalam hal ini merupakan campuran dekstrin, maltosa, glukosa, dan air. Karena molekulnya lebih besar dan sukrosa dan glukosa, dekstrin mempunyai pengaruh osmolar lebih kecil sehingga tidak mudah menimbulkan diare. Pati yang dipanaskan secara kening (dibakar) seperti halnya pada proses membakar roti akan menghasilkan dekstrin. Molekul sakarida bila bertambah kecil, akan meningkatkan daya larut dan kemanisannya, oleh karena itu dekstrin lebih manis daripada pati dengan daya larut lebih tiaggi dan lebih mudah dicernakan. Dekstrin maltosa, suatu produk hasil hidrolisis parsial pati, digunakan sebagai makanan bayi karena tidak mudah mengalami fermentasi dan mudah dicernakan.

d). Reaksi dengan lodin

Pati yang berikatan dengan iodin (I2) akan menghasilkan warna biru. Sifat ini dapat digunakan untuk menganalisis adanya pati. Hal ml disebabkan oleh struktur molekul pati yang berbentuk spiral, sehingga akan mengikat molekul iodin dan terbentuklah warna biru. Bila pati dipanaskan, spiral merenggang, molekul-molekul iodin terlepas sehingga warna biru hilang. Dari percobaan- percobaan didapat bahwa pati akan merefleksikan warna biru bila berupa polimer glukosa yang lebih besar dari dua puluh, misalnya molekul-molekul amilosa. Bila polimernya kurang dan dua puluh seperti amilopektin, maka akan dapat dihasilkan warna merah. Sedang dekstrin dengan polimer 6, 7, dan 8 membentuk warna coklat. Polimer yang lebih kecil dari lima tidak memberikan warna dengan lodin.

  1. Glikogen

Glikogen dinamakan juga pati hewan karena merupakan bentuk simpanan karbohidrat di dalam tubuh manusia dan hewan, yang terutama terdapat di dalarn hati dan otot. Glikogen terdiri atas unit-unit glukosa dalam bentuk rantai lebih bercabang daripada amilopektin. Struktur yang lebih bercabang ini membuat glikogen lebih mudah dipecah. Tubuh mempunyai kapasitas terbatas untuk menyimpan glikogen, yaitu hnya sebanyak 350 gram. Dua pertiga bagian dan glikogen disimpan dalam otot dan selebihnya dalam hati. Glikogen dalam otot hanya dapat digunakan untuk keperluan energi di dalam otot tersebut, sedangkan glikogen dalam hati dapat digunakan sebagai sumber energi untuk keperluan semua sel tubuh. Kelebihan glukosa melampaui kemampuan menyimpannya dalam bentuk glikogen akan diubah menjadi lemak dan disimpan dalam janingan lemak. Glikogen tidak merupakan sumber karbohidrat yang penting dalam bahan makanan, karena hanya terdapat di dalam makanan berasal dan hewani dalam jumlah terbatas.


Molekul glikogen

 

Polisakarida Nonpati/Serat

Serat akhir-akhir ini banyak mendapat perhatian karena peranannya dalam mencegah berbagai penyakit. Serat makanan makanan merupakan polisakarida yang menyususn dinding sel. Ada dua golongan serat, yaitu yang tidak dapat larut dan yang dapat larut dalam air. Serat yang tidak larut dalam air adalah selulosa, hemiselulosa, dan lignin. Serat yang larut dalam air adalah pektin, gum, mukilase, glukan, dan algal. Selulosa, hemiselulosa, dan lignin merupakan kerangka struktural semua tumbuh-tumbuhan.

Selulosa

Selulosa merupakan bagian utama dinding sel tumbuh-tumbuhan yang terdiri atas polimer linier panjang hingga 10.000 unit glukosa terikat dalam bentuk ikatan beta (1→4). Polimer karbohidrat dalam bentuk ikatan beta tidak dapat dicernakan oleh enzim pencernaan manusia. Selulosa merupakan struktur kristal yang sangat stabil. Selulosa yang berasal dan makanan nabati akan meliwati saluran cerna secara utuh. Selulosa melunakkan dan memberi bentuk pada feses karena mampu menyerap air, sehingga membantu gerakan peristaltik usus, dengan demikian membantu defekasi dan mencegah konstipasi.

Seperti juga amilosa, selulosa adalah polimer berantai lurus α(1,4)-D-glukosa. Bedanya dengan amilosa adalah pada jenis ikatan glikosidanya. Selulosa bila dihidrolisis oleh enzim selobiase, yang cara kerjanya serupa dengan β-amilase, akan terhidrolisis dan menghasilkan dua molekul glukosa dan ujung rantai, sehingga dihasilkan selobiosa (β-(1,4)-G-G)

Pada penggilingan padi, dihasilkan hampir 50% sekam yang banyak mengandung selulosa, lignin, dan mineral Na dan K yang mempunyai daya saponifikasi. Selulosa dalam sekam padi dapat dipergunakan untuk makanan ternak, tetapi kandungan ligninnya harus dihilangkan terlebih dahulu, biasanya dengan menggunakan KOH. Di beberapa negara misalnya Taiwan, telah diusahakan untuk melarutkan lignin dengan NH4OH sebagai pengganti KOH. Penambahan NH4OH ini mempunyai keuntungan berupa penambahan sumber N dalam makanan ternak. Di samping itu NH4OH harganya jauh lebih murah dibandingkan dengan KOH.

Turunan selulosa yang dikenal sebagai carboxymethyl cellulose (CMC) sering dipakai dalam industri makanan untuk mendapatkan tekstur yang baik. Misalnya pada pembuatan es krim, pemakaian CMC akan memperbaiki tekstur dan kristal laktosa yang terbentuk akan lebih halus. CMC juga sering dipakai dalam bahan makanan untuk mencegah terjadinya retrogradasi. CMC yang banyak dipakai pada industri makanan adalah garam Na-carboxymethyl cellulose disingkat CMC yang dalam bentuk murninya disebut gum selulosa. Pembuatan CMC ini adalah dengan cara mereaksikan NaOH dengan selulosa murni, kemudian ditambahkan Na kloroasetat.

ROH + NaOH → R—ONa + HOH

R—ONa +ClCH2COONa – R—CH2COONa + NaCl

Karena CMC mempunyai gugus karboksil, maka viskositas larutan CMC dipengaruhi oleh pH larutan; pH optimumnya adalah 5, dan bila pH terlalu rendah (<3), CMC akan mengendap.

Hemiselulosa

Bila komponen- komponen pembentuk jaringan tanaman dianalisis dan dipisah-pisahkan, mula-mula lignin akan terpisah dan senyawa yang tinggal adalah hemiselulosa. Lebih lanjut lagi ternyata hemiselulosa terdiri dan selulosa dan senyawa lain yang larut dalam alkali. Dari hasil hidrolisis hemiselulosa, diperkirakan unit monomer yang membentukknya tidak sejenis (heteromer). Unit pembentuk hemiselulosa terutama adalah D-xilosa, pentosa, heksosa lain dan asam uronat yang membentuk rantai bercabang.

Beda hemiselulosa dengan selulosa yaitu: hemiselulosa mempunyai derajat polimenisasi rendah dan mudali larut dalam alkali tapi sukar larut dalam asam, sedang selulosa adalah sebaliknya. Hemiselulosa tidak merupakan serat-serat yang panjang seperti selulosa, juga suhu bakarnya tidak setinggi selulosa. Hasil hidrolisis selulosa akan menghasilkan D-glukosa, sedangkan hemiselulosa terutama akan menghasilkan D-xilosa dan monosakarida lainnya.

Lignin

Lignin terdiri atas polimer karbohidrat yang relatif pendek yaitu antara 50— 2000 unit. Lignin memberi kekuatan pada struktur tumbuh-tumbuhan, oleh karena itu merupakan bagian keras dan tumbuh-tumbuhan sehingga jarang dimakan. Lignin terdapat di dalam tangkai sayuran, bagian inti di dalam wortel dan biji jambu biji. Lignin sesungguhnya bukan karbohidrat dan seharusnya. tidak dimasukkan dalam serat makanan.

Pektin

Pektin secara umum terdapat di dalam dinding sel primer tanaman, khususnya di sela-sela antara selulosa dan hemiselulosa. Ikatan-ikatan ini larut atau mengembang di dalam air sehingga membentuk gel. Oleh karena itu, di dalam industri pangan digunakan sebagai bahan pengental, emulsifier, dan stabilizer. Senyawa-senyawa pektin juga berfungsi sebagai bahan perekat antara dinding sel yang satu dengan yang lain. Bagian antara dua dinding sel yang berdekatan tersebut disebut lamela tengah (middle lamella).

Pektin terdapat di dalam sayur dan buah, terutama jenis sitrus, apel, jambu biji, anggur, dan wortel. Buah-buahan yang mempunyai kandungan pektin tinggi baik untuk dibuat jam atau jeli. Secara komersial pektin diekstraksi dan apel dan kulit sitrus.

Senyawa-senyawa pektin merupakan polimer dan asam D-galakturonat yang dihubungkan dengan ikatan β-(1,4)-glukosida; asam galakturonat merupakan turunan dari galaktosa.

Pada umumnya senyawa-senyawa pektin dapat diklasifikasi menjadi tiga kelompok senyawa yaitu asam pektat, asam pektinat (pektin), dan protopektin. Pada asam pektat, gugus karboksil asam galakturonat dalam ikatan polimemya tidak teresterkan. Asam pektat dapat membentuk garam seperti halnya asam-asam lain. Asam pektat terdapat dalam jaringan tanaman sebagai kalsium atau magnesium pektat.


Gum

Gum adalah polisakarida larut air terdiri atas 10.000—30.000 unit yang terutama terdiri atas glukosa, galaktosa, manosa, arabinosa, ramnosa, dan asam uronat. Gum arabic adalah sari pohon akasia. Gum diekstraksi secara komersial dan digunakan dalam industri pangan sebagai pengental, emusifter, dan stabilizer. Mukilase merupakan struktur kompleks yang mempunyai ciri khas, yaitu memiliki komponen asam D-galakturonat. Mukilase terdapat di dalam biji-bijian dan akar yang fungsinya diduga mencegah pengeringan. Beta-glukan terutama terdiri atas polimer glukosa bercabang yang terikat dalam bentuk Beta (1—3) dan Beta (1—9). Beta-glukan terdapat dalam serealia, terutama di dalam oat dan barley, dan diduga berperan dalam menurunkan kadar kolesterol darah. Polisakarida algal yang diambil dan algae dan rumput laut merupakan polimer asam-asam manuronat dan guluronat. Produk alga luas digunakan di Indonesia sebagai agar-agar, karaginan dan banyak digunakan sebagai bahan pengental dan stabilizer.

Agar merupakan kárbohidrat terdiri dan galaktosa yang dihubungkan satu dengan lainnya melalui ikatan β(1 – 4), inembentuk Agarose dan Agaropektin dengan proporsi yang berbéda-beda. Agaropektin mernpunyai struktur seperti agarose dengan residu asan serta D-asam glukouronat dan asam pyruvat. Agaropektin merupakan campuran dari (1-3) dengan (1 – 4) galaktosa dan (3 – 6) anhidrogalaktosa, serta sebagian kecil asam sulfat dan asam D-glukouronat.

Agaropektin dapat dipisahkan dan agarose dengan cara pengendapan agarqpektin dengar menggunakàn senyawa garam Quarternary cimonium atau propilen-glycot. Agarose merupakan komponen agar-agar yang bertanggung jawab atas daya gelasi agar-agar. Di samping itu, viskositas dan daya gelasi agar-agar tergantung pada cara produksi dan jenis ganggang yang digunakan, serta kandungan sulfat yang terdapat pada agar-agar tersebut. Kenaikan kandu.ngan sulfat akan mereduksi kapasitas gelasi agar-agar.

Karaginan merupakan getah rumput laut yang diekstraksi dengan air atau larutan alkali dan spesies tertentu dan kelas Rhodophyceae (alga merah). Karaginan rnerupakan senyawa hidrokoloid yang terdiri dan ester kalium, natrium, magnesium dan kalsium sulfat, dengan galaktosa dan 3,6 anhydrogalakto copolymer. Sebagai stabilisator (pengatur kesembangan), thickener atau pengental, gelling agent (pembentuk gel), pengemulsi, lain-lain, karaginan sangat penting peranannya. Sifat ini banyak dimanfaatkan oleh industri makanan, obat-obatan, kosmetik, tekstil, cat, pasta gigi dan industri lainnya.

  • Reaksi-reaksi karbohidrat

1.Kemanisan

Pada umumnya manusia baik bayi, anak, maupun orang dewasa menyukai rasa manis gula; demikian juga halnya beberapa serangga dan hewan lain.

Beberapa monosakarida dan oligosakarida mempunyai rasa manis sehingga sering kali digunakan sebagai bahan pemanis. Yang sering digunakan adalah sukrosa (kristal), glukosa (dalam sirup jagung), dan dekstrosa (kristal D-glukosa). D-fruktosa dan maltosa jarang dijual dalam bentuk kristal, tetapi merupakan bahan pemanis makanan yang penting. D-fruktosa terdapat dalam gula invert, dan sirup jagung mengandung 45% D-fruktosa atau maltosa. Sebagai standar kemanisan dipergunakan rasa manis suknosa.

Bila kemanisan beberapa gula dibandingkan dengan kemanisan sukrosa = 1,00, maka kemanisan D-galaktosa = 0,4 — 0,6; maltosa = 0,3—0,5; laktosa = 0,2—0,3; dan rafinosa 0,15; sedang D-fruktosa sekitar 1,32 serta xilitol hampir sama kemanisannya dengan sukrosa =0,96 —1,18.

Kemanisan larutan D-fruktosa terhadap sukrosa akan menurun bila suhu dinaikkan. Pada suhu 5°C, D-fruktosa kira-kira 1,4 kali lebih manis daripada sukrosa. Tetapi pada suhu 40°C kira-kira sama, dan pada suhu 60°C kemanisan D-sukrosa tinggal 0,8. Demikian balnya pada D-galaktosa, D-glukosa, dan L-sorbosa. Sedang kemanisan maltosa tidak dipengaruhi oleh perubahan-perubahan. suhu.

2.Pencoklatan (browning)

Proses pencoklatan atau browning sering terjadi pada buah-buahan seperti pisang, peach, pear, salak, pala, dan apel. Buah yang memar juga mengalami proses pencoklatan. Pada umumnya proses pencokiatan dapat dibagi menjadi dua jenis, yaitu proses pencoklatan yang enzimatik dan yang nonenzimatik.

a.Pencoklatan enzimatik

Pencoklatan enzimatik terjadi pada buah-buahan yang banyak menpndung substrat senyawa fenolik. Ada banyak sekali senyawa fenolik yang dapat bertindak sebagai substrat dalam proses pencoklatan enzimatik pada buah-buahan dan sayuran. Di samping katekin dan turunannya seperti tirosin, asam kafeat, asam kiorogenat, serta leukoantosianin dapat menjadi substrat proses pencoklatan.

Senyawa fenolik dengan jenis ortodihidroksi atau trihidroksi yang saling berdekatan merupakan substrat yang baik untuk proses pencoklatan. Proses pencokiatan enzimatik memerlukan adanya enzim fenol oksidase dan oksigen yang harus berhubungan dengan substrat tersebut.

 

Enzim-enzim yang dapat mengkatalisis oksidasi dalam proses pencoklatan dikenal dengan berbagai nama, yaitu fenol oksidase, polifenol oksidase, fenolase, atau polifenolase; maing-masing bekerja secara spesifik untuk substrat tertentu. Terjadinya reaksi pencoklatan diperkirakan melibatkan perubahan dan bentuk kuinol menjadi kuinon seperti terlihat pada gambar berikut ini:

 


Struktur kuinon

 

Reaksi pencoklatan yang nonezimatik belum diketahui atau dimengerti penuh. Tetapi pada umumnya ada tiga macam reaksi pencokiatan nonenzimatik yaitu karamelisasi, reaksi Maillard, dan pencokiatan akibat vitamin C.

b. Karamelisasi

Bila suatu larutan sukrosa diuapkan maka konsentrasinya akan meningkat, demikian juga titik didihnya. Keadaan ini akan terus berlangsung sehingga seluruh air menguap semua. Bila keadaan tersebut telah tercapai dan penanasan diteruskan, makacairan yang ada bukan lagi terdini dan air tetapi cairan sukrosa yang lebur. Titik lebur sukrosa adalah 160°C,


Bila gula yang telah mencair tersebut dipanaskan terus sehingga suhunya melampaui titik leburnya, misalnya pada suhu 170°C, maka mulailah terjadi karamelisasi sukrosa. Gula karamel senirig dipergunakan sebagai bahan pemberi cita rasa makanan. Reaksi yang terjadi bila gula mulai hancur atau terpecah-pecah tidak diketahui pasti, tetapi paling sedikit melalui tahap-tahap seperti berikut: Mula-mula setiap molekul sukrosa dipecah menjadi sebuah molekul glukosa dan sebuah molekul fruktosan (fruktosa yang kekurangan asam molekul air). Suhu yang tinggi mampu mengeluarkan sebuah molekul air dan setiap molekul gula sehingga terjadilah glukosan, suatu molekul yang analog dengan fruktosan. Proses pemecahan dan dehidrasi diikuti dengan polimenisasi, dan beberapa jenis asam timbul dalam campuran tersebut.

 

Bila soda ditambahkan ke dalam gula yan telah terkaramelisasi, maka adanya panas dan asam akan mengeluarkan gelembung-gelembung CO2 yang mengembangkan cairan karamel. Bila didinginkan akan membentuk benda yang kropos dan rapuh. Bila soda ditambahkan ke dalam gula yang telah terkaramelisasi, maka adanya panas dan asam akan mengeluarkan gelembung-gelembung CO2 yang mengembangkan cairan karamel. Bila didinginkan akan membentuk benda yang kropos dan rapuh.

c. Reaksi Mailard

Reaksj-reaksi antara karbohidrat, khususnya gula pereduksi dengan gugus amina primer, disebut reaksi-reaksi Maillard. Hasil reaksi tersebut menghasilkan bahan berwarna coklat, yang sering dikehendaki atau kadang-kadang malahan menjadi pertanda penurunan mutu. Warna coklat pada pembuatan sate atau pemanggangan daging, adalah warna yang dikehendaki, demikian juga halnya pada penggorengan ubi jalar dan singkong serta pencokiatan yang indah dan berbagai roti. Gugus amina primer biasanya terdapat pada bahan awal sebagai asam amino.

Reaksi Maillard berlangsung melalui tahap-tahap sebagai berikut:

  • Suatu aldosa bereaksi bolak-balik dengan asam amino atau dengan suatu gugus amino dan protein sehingga menghasilkan basa Schiff.
  • Perubahan terjadi menurut reaksi Amadori sehingga menjadi amino ketosa.Dehidrasi dan hasil reaksi Amadori membentuk turunan-turunan furfuraldehida, misalnya dan heksosa diperoleh hidroksimetil furfural.
  • Proses dehidrasi selanjutnya menghasilkan hasil antara men x-dikarbonil yang diikuti penguraian menghasilkan reduktor-reduktor dan a-dikarboksil seperu metilglioksal, asetol, dan. diasetil.
  • Aldehida-aldehida aktif dan 3 dan 4 terpolimerisasi tanpa mengikutsertakan gugus amino (hal ini disebut kondensasi aldol) atau dengan gugusan amino membentuk senyawa berwarna coklat yang disebut melanoidin.

d.Pencoklatan akibat Vitamin C

Vitamin C (asam askorbat) merupakan suatu senyawa reduktor dan juga dapat bertindak sebagai precursor untuk pembentukan warna cokiat nonenzimatik. Asam-asam askorbat berada dalam keseimbangan dengan asam dehidroaskorbat. Dalam suasana asam, cincin lakton asam dehidroaskorbat terurai secara irreversible dengan membentuk suatu senyawa diketogulonat; dan kemudian berlangsunglah reaksi Maillard dan proses pencoklatan.


Gum Arab

Gum arab dihasilkan dari getah bermacam-macam pohon Acasia sp. di Sudan dan Senegal. Gum arab pada dasarnya merupakan serangkaian satuan-satuan D-galaktosa, L-arabinosa, asam D-galakturonat dan L-ramnosa. Berat molekulnya antara 250.000-1.000.000. Gum arab jauh lebih mudah larut dalam air dibanding hidrokoloid lainnya. Pada olahan pangan yang banyak mengandung gula, gum arab digunakan untuk mendorong pembentukan emulsi lemak yang mantap dan mencegah kristalisasi gula (Tranggono dkk,1991). Gum dimurnikan melalui proses pengendapan dengan menggunakan etanol dan diikuti proses elektrodialisis (Stephen and Churms, 1995). Menurut Imeson (1999), gum arab stabil dalam larutan asam. pH alami gum dari Acasia Senegal ini berkisar 3,9-4,9 yang berasal dari residu asam glukoronik. Emulsifikasi dari gum arab berhubungan dengan kandungan nitrogennya (protein).

Gum arab dapat meningkatkan stabilitas dengan peningkatan viskositas. Jenis pengental ini juga tahan panas pada proses yang menggunakan panas namun lebih baik jika panasnya dikontrol untuk mempersingkat waktu pemanasan, mengingat gum arab dapat terdegradasi secara perlahan-lahan dan kekurangan efisiensi emulsifikasi dan viskositas.

Menurut Alinkolis (1989), gum arab dapat digunakan untuk pengikatan flavor, bahan pengental, pembentuk lapisan tipis dan pemantap emulsi. Gum arab akan membentuk larutan yang tidak begitu kental dan tidak membentuk gel pada kepekatan yang biasa digunakan (paling tinggi 50%). Viskositas akan meningkat sebanding dengan peningkatan konsentrasi (Tranggono dkk, 1991). Gum arab mempunyai gugus arabinogalactan protein (AGP) dan glikoprotein (GP) yang berperan sebagai pengemulsi dan pengental (Gaonkar,1995).

Hui (1992) menambahkan bahwa gum arab merupakan bahan pengental emulsi yang efektif karena kemampuannya melindungi koloid dan sering digunakan pada pembuatan roti. Gum arab memiliki keunikan karena kelarutannya yang tinggi dan viskositasnya rendah. Karakteristik kimia gum arab berdasar basis kering dapat dilihat pada Tabel

Komponen Nilai (%)
Galaktosa 36,2 ± 2,3
Arabinosa 30,5 ± 3,5
Rhamnosa 13,0 ± 1,1
Asam glukoronik 19,5 ± 0,2
Protein 2,24 ± 0,15
Sumber : Glicksman (1992)

Ditulis oleh Ari Setyawan (Alumni Jurusan Teknologi Hasil Pertanian Universitas Brawijaya 2007)

Daftar Pustaka
Alinkolis, J. J. 1989. Candy Technology. The AVI Publishing Co. Westport-Connecticut
Gaonkar, A. G. 1995. Inggredient Interactions Effects on Food Quality. Marcell Dekker, Inc., New York
Hui, Y. H. 1992. Encyclopedia of Food Science and Technology. Volume II. John Willey and Sons Inc, Canada
Imeson, A. 1999. Thickening and Gelling Agent for Food. Aspen Publisher Inc, New York
Stephen, A. M. and S. C. Churms. 1995. Food Polysaccarides and Their Applications. Marcell Dekker, Inc, New York
Tranggono, S., Haryadi, Suparmo, A. Murdiati, S. Sudarmadji, K. Rahayu, S. Naruki, dan M. Astuti. 1991. Bahan
Tambahan Makanan (Food Additive). PAU Pangan dan Gizi UGM, Yogyakarta


SIFAT DAN KARAKTERISTIK KARAGENAN

KARAGENAN

 Karagenan merupakan polisakarida yang diekstraksi dari rumput laut merah dari jenis Chondrus, Euchema, Gigartina, Hypnea, Iradea dan Phyllophora. Karagenan dibedakan dengan agar berdasarkan kandungan sulfatnya (Hall 2009). Jumlah dan posisi sulfat membedakan macam-macam polisakarida Rhodophyceae, polisakarida tersebut harus mengandung 20% sulfat berdasarkan berat kering untuk diklasifikasikan sebagai karagenan (FAO 2007).

Karagenan bukan biopolimer tunggal, tetapi campuran dari galaktan-galaktan linear yang mengandung sulfat dan larut dalam air. Galaktan-galaktan tersebut terhubung oleh 3-β-D-galaktopiranosa (G-units) dan 4-α-D-galktopiranosa (D-units) atau 4-3,6-anhidrogalaktosa (DA-units), membentuk unit pengulangan disakarida dari karagenan. Galaktan yang mengandung sulfat diklasifikasikan berdasarkan adanya 3,6-anhidrogalaktosa serta posisi dan jumlah golongan sulfat pada strukturnya (Imeson 2010). Kappa karagenan tersusun dari α(1,3)-D-galaktosa-4-sulfat dan β(1,4)-3,6-anhidro-D-galaktosa. Karagenan juga mengandung D-galaktosa-2-sulfat ester (Hall 2009).

Karagenan komersil memiliki kandungan sulfat 22-38% (w/w). Karagenan dijual dalam bentuk bubuk, warnanya bervariasi dari putih sampai kecoklatan bergantung dari bahan mentah dan proses yang digunakan. Karagenan yang umumnya ada di pasaran terdiri atas 2 tipe, yaitu refined karagenan dan semirefined karagenan. Semirefined karagenan dibuat dari spesies rumput laut Euchema yang banyak terdapat di Indonesia dan Filipina. Semirefined karagenan mengandung lebih banyak bahan yang tidak larut asam (8-15%) dibandingkan refined karagenan (2%) (Fahmitasari 2004).

Sifat Dasar Karagenan

Sifat dasar karagenan terdiri dari tiga tipe karagenan yaitu kappa, iota dan lambda karagenan. Tipe karagenan yang paling banyak dalam aplikasi pangan adalah kappa karagenan. Sifat-sifat karagenan meliputi kelarutan, viskositas, pembentukan gel dan stabilitas pH.

Kelarutan

Kelarutan karagenan dalam air dipengaruhi oleh beberapa faktor diantaranya tipe karagenan, temperatur, pH, kehadiran jenis ion tandingan dan zat-zat terlarut lainnya. Gugus hidroksil dan sulfat pada karagenan bersifat hidrofilik sedangkan gugus 3,6-anhidro-D-galaktosa lebih hidrofobik. Lambda karagenan mudah larut pada semua kondisi karena tidak memiliki unit 3,6-anhidro-D-galaktosa dan mengandung gugus sulfat yang tinggi. Karagenan jenis iota bersifat lebih hidrofilik karena adanya gugus 2-sulfat yang dapat menetralkan 3,6-anhidro-D-galaktosa yang bersifat kurang hidrofilik. Karagenan jenis kappa kurang hidrofilik karena lebih banyak memiliki gugus 3,6-anhidro-D-galaktosa (Imeson 2010).

Karakteristik daya larut karagenan juga dipengaruhi oleh bentuk garam dari gugus ester sulfatnya. Jenis sodium umumnya lebih mudah larut, sementara jenis potasium lebih sukar larut. Karagenan memiliki kemampuan membentuk gel pada saat larutan panas menjadi dingin. Proses pembentukan gel bersifat thermoreversible, artinya gel dapat mencair pada saat pemanasan dan membentuk gel kembali pada saat pendinginan (Gliksman 1983; Imeson 2000).

Stabilitas pH

Karagenan dalam larutan memiliki stabilitas maksimum pada pH 9 dan akan terhidrolisis pada pH dibawah 3,5. Kondisi proses produksi karagenan dapat dipertahankan pada pH 6 atau lebih. Hidrolisis asam akan terjadi jika karagenan berada dalam bentuk larutan, hidrolisis akan meningkat sesuai dengan peningkatan suhu. Larutan karagenan akan menurun viskositasnya jika pHnya diturunkan dibawah 4,3 (Imeson 2000). Kappa dan iota karagenan dapat digunakan sebagai pembentuk gel pada pH rendah, tetapi tidak mudah terhidrolisis sehingga tidak dapat digunakan dalam pengolahan pangan. Penurunan pH menyebabkan terjadinya hidrolisis dari ikatan glikosidik yang mengakibatkan kehilangan viskositas. Hidrolisis dipengaruhi oleh pH, temperatur dan waktu.

Viskositas

Viskositas adalah daya aliran molekul dalam sistem larutan. Viskositas suatu hidrokoloid dipengaruhi oleh beberapa faktor yaitu konsentrasi karagenan, temperatur, jenis karagenan, berat molekul dan adanya molekul-molekul lain. Jika konsentrasi karagenan meningkat maka viskositasnya akan meningkat secara logaritmik. Viskositas larutan karagenan terutama disebabkan oleh sifat karagenan sebagai polielektrolit. Gaya tolakan (repulsion) antar muatan-muatan negatif sepanjang rantai polimer yaitu gugus sulfat, mengakibatkan rantai molekul menegang. Karena sifat hidrofiliknya, polimer tersebut dikelilingi oleh molekul-molekul air yang termobilisasi, sehingga menyebabkan larutan karagenan bersifat kental.

Adanya garam-garam yang terlarut dalam karagenan akan menurunkan muatan bersih sepanjang rantai polimer. Penurunan muatan ini menyebabkan penurunan gaya tolakan (repulsion) antar gugus-gugus sulfat, sehingga sifat hidrofilik polimer semakin lemah dan menyebabkan viskositas larutan menurun. Viskositas larutan karagenan akan menurun seiring dengan peningkatan suhu sehingga terjadi depolimerisasi yang kemudian dilanjutkan dengan degradasi karagenan.

Pembentukan gel

Menurut Fardiaz (1989), pembentukan gel adalah suatu fenomena penggabungan atau pengikatan silang rantai-rantai polimer sehingga terbentuk suatu jala tiga dimensi bersambungan. Selanjutnya jala ini menangkap atau mengimobilisasikan air didalamnya dan membentuk struktur yang kuat dan kaku. Sifat pembentukan gel ini beragam dari satu jenis hidrokoloid ke jenis lain, tergantung pada jenisnya. Gel mempunyai sifat seperti padatan, khususnya sifat elastis dan kekakuan.

Kappa-karagenan dan iota-karagenan merupakan fraksi yang mampu membentuk gel dalam air. Karagenan memiliki kemampuan membentuk gel pada saat larutan panas menjadi dingin. Proses pembentukan gel bersifat thermoreversible, artinya gel dapat mencair pada saat pemanasan dan membentuk gel kembali pada saat pendinginan (Gliksman 1983; Imeson 2000).

Proses pemanasan dengan suhu yang lebih tinggi dari suhu pembentukan gel akan mengakibatkan polimer karagenan dalam larutan menjadi random coil (acak). Bila suhu diturunkan, maka polimer akan membentuk struktur double helix (pilinan ganda) dan apabila penurunan suhu terus dilanjutkan polimer-polimer ini akan terikat silang secara kuat dan dengan makin bertambahnya bentuk heliks akan terbentuk agregat yang bertanggung jawab terhadap terbentuknya gel yang kuat. Jika diteruskan, ada kemungkinan proses pembentukan agregat terus terjadi dan gel akan mengerut sambil melepaskan air. Proses terakhir ini disebut sineresis (Fardiaz 1989).

Kemampuan pembentukan gel pada kappa dan iota karagenan terjadi pada saat larutan panas yang dibiarkan menjadi dingin karena mengandung gugus 3,6 -anhidrogalaktosa. Adanya perbedaan jumlah, tipe dan posisi gugus sulfat akan mempengaruhi proses pembentukan gel. Kappa karagenan dan iota karagenan akan membentuk gel hanya dengan adanya kation-kation tertentu seperti K+, Rb+ dan Cs+. Potensi membentuk gel dan viskositas larutan karagenan akan menurun dengan menurunnya pH, karena ion H+ membantu proses hidrolisis ikatan glikosidik pada molekul karagenan (Angka dan Suhartono 2000). Konsistensi gel dipengaruhi beberapa faktor antara lain: jenis dan tipe karagenan, konsistensi, adanya ion-ion serta pelarut yang menghambat pembentukan hidrokoloid.

Sifat fungsional karagenan

Karagenan berperan sangat penting sebagai stabilisator (pengatur keseimbangan), thickener (bahan pengentalan), pembentuk gel, pengemulsi dan lain-lain (Imeson 2010). Sifat ini banyak dimanfaatkan dalam industri makanan, obat-obatan, kosmetik, tekstil, cat, pasta gigi dan industri lainnya.

Penambahan karagenan (0,01-0,05%) pada es krim berfungsi sebagai stabilisator yang sangat baik. Penambahan karagenan dapat mencegah pengendapan coklat pada susu coklat dan pemisahan es krim serta meningkatkan kekentalan kekentalan lemak dan pengendapan kalsium (Winarno 1996). Karagenan dapat berfungsi sebagai pengikat, melindungi koloid, penghambat sineresis dan flocculating agent. Karagenan termasuk senyawa hidrokoloid yang banyak digunakan untuk meningkatkan sifat-sifat tektur dan kestabilan suatu cairan produk pangan (Distantina et al. 2009).


BAKING SODA

Bubuk ragi adalah agensia peragi yang dihasilkan oleh pencampuran suatu bahan yang beraksi asam dengan natrium bikarbonat dengan pati atau tepung, campuran tersebut membebaskan karbondioksida tidak kurang 12%. Dari 12% karbondioksida yang dipenuhi dengan memasukkan 23% natrium bikarbonat. Tetapi, karena untuk mengganti gas-gas yang hilang dalam penyimpanan dan kondisi lain yang menurunkan hasil gas yang dibebaskan, memerlukan formula yang mengandung kurang lebih 26-30% soda. Bubuk ragi terdiri dari asam peragi dan bahan pengisi misalnya pati dan tepung serta senyawa lain seperti kalsium laktat atau kalsium silikat hidrat yang memiliki pengaruh terhadap terbentuknya karbondioksida dari suatu sistem. Terdapat bukti bahwa pengencer tidak sepenuhnya bermanfaat tetapi mampu untuk menghambat reaksi komponen peragi, karena adanya penyerapan air selama penyimpanan untuk mengubah sedikit kecepatan selama pencampuran (Desrosier, 1988).

Jadi fungsi dari baking soda yakni membuat pati mengembang. Terutama digunakan untuk menyerap kelembaban, dan memperpanjang umur simpan (Wikipedia, 2011).

Soda adalah alkali, dan bila digunakan dengan jumlah asam penetral yang tepat, maka CO2 terbentuk, meragikan adonan. Bila digunakan tanpa penetralan asam-asam bahan makanan, maka bahan tersebut akan melemahkan protein.

Penambahan bahan selain pati yang suka air dapat menyulitkan pemasakan pati, sehingga kematangan adonan pati mempengaruhi hasil akhir dan akibatnya mempengaruhi kerenyahan. Oleh karena itu diperlukan bahan yang dapat meningkatkan daya kembang dan kerenyahan produk, di antaranya adalah menambahkan NaHCO3 (Haryadi, 1989).

Bahan pengembang dapat meningkatkan kemampuan pati dalam menyerap air. NaHCO3 sendiri dapat mengikat air membentuk NaOH dan H2CO3 yang nantinya berperan pada pengembangan dengan menghasilkan gas CO2 dan uap air karena adanya pemanasan yakni pengeringan dan penggorengan.


ASAM LEMAK OMEGA 3 DAN MANFAATNYA

ASAM LEMAK OMEGA 3 DAN MANFAATNYA

Asam lemak tidak jenuh ganda (poly unsaturated fatty acid, PUFA) omega-3 adalah asam lemak yang mengandung dua atau lebih ikatan rangkap, dengan ikatan rangkap terakhir terletak pada atom karbon ketiga dari ujung metil rantai asam lemak. Asam alfa linolenik (ALA, 18:3), asam eikosapentaenoik (EPA, 20:5), dan asam dokosaheksaenoik (OHA, 22:6) adalah asam lemak omega-3 yang paling umum .

Asam Lemak Omega 3 atau yang sering disebut Omega 3 merupakan sejenis lemak yang tidak diproduksi oleh tubuh, oleh karena itu kita harus memenuhinya dari makanan yang kita makan. Omega 3 dibutuhkan oleh tubuh untuk pembentukan membran sel sehat, meliputi otak kita dan sel sistem syaraf. Ketiga jenis Omega 3 ini sangat diperlukan oleh tubuh kita. EPA dan DHA bisa anda dapat dari ikan, seperti ikan makarel, sarden, tuna, dan salmon. Namun, jika anda tidak suka ikan apalagi yang goreng-gorengan, mungkin anda bisa mendapatkan Omega 3 dari buah-buahan. Tahu, kacang kedelai, kanola, kenari, dan biji rami merupakan sumber ALA. Masing-masing komponen memiliki fungsi yang berbeda dalam tubuh. DHA berfungsi sebagai jaringan pembungkus saraf yang berperan dalam melancarkan perintah saraf dan mengantarkan rangsangan saraf ke otak. EPA berfungsi dalam membantu pembentukan sel-sel darah dan jantung, menyehatkan sistem peredaran darah dengan melancarkan sirkulasi darah dan LNA berperan dalam menghasilkan energi dari makanan yang dikonsumsi dan kemudian membawanya ke sel-sel tubuh yang membutuhkannya. Dua asam lemak Omega-3 pada ikan adalah asam eikosapentaenoat (EPA, 20:5 ω-3) dan dokosaheksaenoat (DHA, 22:6 ω-3), sedangkan asam lemak linolenat (lna, 18:3 ω-3) jarang dijumpai, tetapi tersedia melimpah pada biji tumbuhan tertentu, misalnya pada minyak biji lobak, minyak biji kedelai dan biji kismis hitam (Nettleton, 1991 dalam Nettleton, 1995).

Sumber utama asam lemak omega-3 yang tersedia di pasar adalah minyak ikan , yang biasanya dikonsumsi dalam bentuk ikan yang dimasak, kapsul minyak ikan, atau makanan dengan bahan tambahan minyak ikan (Alonso dan Maroto, 2000). Namun demikian, minyak ikan sebagai sumber asam lemak omega-3 mempunyai keterbatasan. Pertama, ada kekhawatiran tentang penerimaan konsumen pada minyak ikan atau kapsul minyak ikan karena rasa dan baunya . Sebagai contoh, Kris-Etherton dkk. (2002) melaporkan bahwa mengkonsumsi lebih dari 1 g/hr minyak ikan menyebabkan rasa amis. Ada juga kekhawatiran pencemaran logam berat pada ikan dan minyak ikan. Environmental Protection Agency dan Food and Drug Administration merekomendasikan pada wanita hamil atau ibu menyusui dan bayi menghindari makan ikan dan kerang yang mungkin mengandung merkuri tinggi (EPA, 2004). Kekawatiran lain dengan penggunaan minyak ikan adalah kelanjutan sumber daya alam yang juga merupakan kekawatiran industri akuakultur. Sejak 1984 produksi minyak ikan masih stabil, dengan produksi rata-rata tahunan 13 juta ton, tetapi dengan peningkatan permintaan minyak ikan menyebabkan harga komoditas ini naik cepat. Sekarang, kirakira 50 % minyak ikan berasal dari industri akuakultur (Tidwell dan Allan 2001). Food dan Agriculture Organization United Nations meramalkan bahwa permintaan rninyak ikan global pada 2015 akan mencapai 145% dari kapasitas produksi global historis dan akan terus tumbuh (New dan Wijkstr6m, 2002). Oleh karena kekhawatiran dengan persediaan dan konsumsi ikan dan minyak ikan sebagai sumber asam lemak omega-3, telah dilakukan riset luas untuk mengembangkan sumber alternatif asam lemak yang penting ini . Mikroba seperti alga atau fungi adalah produsen utama asam lemak omega3 karena mempunyai lintasan biosintesa yang diperlukan. Mikroba telah secara ekstensif diteliti sebagai sumber potensial asam lemak. Asam lemak dari sumber mikroba dapat diekstrak dan digunakan sebagai komponen pada pangan yang diperkaya dengan omega-3 (Simopoulos, 1999) atau sebagai bahan tambahan pakan unggas dan pakan ikan kolam (Harel et aI., 2002). Studi terbaru juga telah meneliti tanaman tinggi dan hewan yang secara genetik diubah untuk menghasilkan asam lemak omega-3. Saat ini, asam lemak omega-3 dari mikroba masih alternatif yang lebih disukai, meski riset dalam pengembangan tumbuhan atau hewan transgenik untuk produksi omega-3 masih berlanjut. Banyak mikroalga mampu menghasilkan sejumlah besar asam lemak omega-3. Spesies seperti Nitzschia spp., Nannochloropsis spp., Navicula spp., Phaeodactylum spp., dan Porphyridium spp. telah dipelajari untuk produksi EPA. Sebagian besar spesies alga bersifat autotrof dan dan dapat dibiakkan dalam fotobioreaktor (Ward dan Singh, 2005). Hanya masalahnya, biaya untuk menumbuhkannya belum sesuai dengan skala industrinya. Beberapa jenis alga, seperti Nitzschia lavis, dapat menghasilkan EPA dalam kondisi heterotrof (Wen, 2001).



Omega 3 merupakan salah satu jenis lemak tidak jenuh yang sangat dibutuhkan tubuh. Sayangnya, tubuh tidak dapat menghasilkan sendiri jenis lemak ini sehingga kebutuhan akan lemak jenis ini harus didapatkan melalui asupan makanan. Para ahli gizi menyatakan bahwa tubuh membutuhkan sekitar 300 mg Omega 3 per harinya. Menurut American Heart Association, kita harus mengkonsumsi minimal dua porsi per minggu. Namun, takaran yang ideal masih belum jelas, karena kebutuhan tubuh setiap orang berbeda-beda. Ada baiknya anda bertanya pada ahli gizi atau dokter tentang dosis Omega 3 yang tepat, karena bila jumlahnya berlebihan dapat meningkatkan risiko stroke, atau perdarahan yang berlebihan pada beberapa orang.

Asam lemak Omega-3 mempunyai banyak manfaat kesehatan dan harus dimasukkan dalam diet manusia. American Dietetic Association and Dietitians of Canada secara resmi merekomendasikan 20 -35% dari energi harian harus berasal dari lemak makan , dengan penekanan pada konsumsi asam lemak omega-3 (Kris-Etherton dan Innis, 2007). American Heart Association merekomendasikan bahwa konsumen yang sehat mengkonsumsi lemak ikan per minggu dan mendorong pasien yang mengidap penyakit jantung koroner untuk mengkonsumsi 1 g/hr EPA dan OHA (Kris-Etherton dkk., 2002). Jumlah PUFA (polyunsaturated fatty acids) yang optimum untuk dikonsumsi adalah 6-10 % dari total energi yang dibutuhkan setiap hari. Kekurangan PUFA dapat menyebabkan risiko terkena kanker, menurunkan kekebalan tubuh, meningkatkan risiko arteriosklerosis, meningkatkan jumlah peroksida sehingga mempercepat proses penuaan dan meningkatkan risiko terkena batu empedu (Nurjanah, 2002).

Asam lemak Omega-3 apabila dikonsumsi berlebihan juga akan memberikan dampak negatif, antara lain menyebabkan badan berbau minyak ikan, menimbulkan gangguan pencernaan dan pendarahan pada saat luka, operasi, atau bila terserang mimisan akan lebih lama sembuhnya karena proses penggumpalan darah lamban (Mohamad, 2003 ).

Omega 3 beberapa tahun terakhir telah diteliti dan disorot oleh berbagai pihak sangat bermanfaat untuk kesehatan. Apa saja manfaat Omega 3? Ini mungkin menjadi pertanyaan bagi beberapa orang. Sebenarnya begitu banyak banyak manfaat kesehatan yang bisa anda kita dapatkan dari Omega 3 terutama untuk orang dewasa, anak-anak, wanita hamil dan orang yang sedang menderita penyakit. Berikut ini adalah beberapa manfaat yang bisa anda dapatkan dari mengkonsumsi Omega 3:

  1. Mudah lupa, susah mengingat sesuatu atau pikun merupakan penyakit yang sering diderita oleh para orang tua. Omega 3 sebagai makanan otak sangat penting untuk perkembangan membran sel pada sistem neurologis dari otak kita dan jalur sinyal. Hal ini telah terbukti secara ilmiah bahwa Omega 3 membantu perkembangan otak dan memori untuk anak-anak dan orang dewasa.
  2. Mencegah penyakit jantung. Penelitian menunjukkan bahwa Omega 3 dapat mencegah penyakit jantung dan  penyakit lain yang berhubungan dengan jantung, hal ini dikarenakan Omega 3 meningkatkan elastisitas arterial. Menurunkan resiko aritmia (detak jantung yang abnormal) dan juga tekanan darah tinggi.
  3. Menurunkan kadar kolesterol tinggi. Sebuah Penelitian mengatakan pengkonsumsian ikan yang kaya akan Omega 3 secara teratur terbukti meningkatkan kolesterol baik dan menurunkan kadar trigliserida (lemak dalam darah).
  4. Omega 3 sangat baik untuk kesehatan mata dan penglihatan secara umum, karena Omega 3 merupakan komponen utama dari retina.
  5. Membantu mengurangi depresi. Ini mungkin bermanfaat bagi orang-orang dengan depresi ringan. Dapat meningkatkan efektivitas pengobatan karena mempengaruhi otak dengan cara yang berbeda dari antidepresan, sehingga menggabungkan Omega 3 dengan obat antidepresan, akan  mengurangi depresi dengan cara yang berbeda, menurut David Mischoulon, MD, SEOrang profesor psikiatri dari Harvard Medical School.
  6. Mengurangi risiko pembekuan darah. Omega 3 memiliki sifat antikoagulan yang mempengaruhi kemampuan trombosit untuk membekukan darah, sehingga peredaran darah menjadi lancar dan juga terhindar dari penyumbatan pembuluh darah yang berakibat stroke.
  7. Untuk wanita hamil, Omega 3 telah terbukti bahwa Omega 3 sangat penting dalam perkembangan kesehatan fisik dan mental pada bayi .
  8. Omega 3 dapat mengurangi nyeri haid. Hasil Studi menunjukkan bahwa para wanita yang mengkonsumsi suplemen Omega 3 mengalami berkurangnya rasa nyeri pada saat haid. Kedua jenis Omega 3yaitu asam eicosapentaenoic (EPA) dan asam docosahexaenoic (DHA) diyakini mengurangi tingkat prostaglandin. Tingkat prostaglandin yang tinggi pada wanita selama menstruasi membuat kontraksi rahim meningkat dan kejang otot.
  9. Omega 3 memiliki sifat anti-inflamasi dan juga bermanfaat untuk kondisi seperti asma, psoriasis eksim, dan radang sendi.
  10. Omega 3 sangat baik untuk meningkatkan kesehatan anak secara keseluruhan dan perkembangan fisik dan mental. Hal ini terbukti bahwa anak-anak yang mengkonsumsi Omega 3 sebagai suplemen memiliki kemampuan baca yang lebih baik. Omega 3 juga bermanfaat bagi anak-anak yang menderita disleksia, dyspraxia dan ADHD.
  11. Omega 3 juga dapat mencegah penyakit Alzheimer.
  12. Penelitian juga menunjukkan bahwa Omega 3 dapat membantu orang dengan inflamasi perut dengan kondisi seperti IBS, Ulcerative colitis dan colitis.
  13. Orang yang menderita berbagai alergi juga dapat menambahkan suplemen Omega 3 ke dalam makanan mereka sehari-hari.
  14. Bermanfaat untuk diabetes. Sebuah studi penelitian menunjukkan Omega 3 dapat menurunkan trigliserida dan apoproteins, dan tidak ada efek samping pada kontrol glikemik.
  15. Sebuah penelitian yang cermat menunjukkan bahwa pasangan yang sedang merencanakan bayi atau sedang hamil atau sedang menyusui direkomendasikan untuk mengkonsumsi Omega 3 untuk membantu pertumbuhan bayi lebih cepat.
  16. Omega 3 juga berperan dalam tingkat penyerapan vitamin yang larut dalam lemak, seperti vitamin A, D, E dan vitamin K. Vitamin tersebut diperlukan oleh tubuh kita untuk melawan infeksi, menjaga kesehatan mata dan kulit, sirkulasi jantung, pembekuan darah dan kuat tulang.

Meskipun Omega 3 banyak memiliki manfaat kesehatan, tetapi sebuah studi yang dipublikasikan pada tahun 2006 oleh Journal of American Medical Association melaporkan bahwa analisis terhadap berbagai penelitian tidak menemukan bukti bahwa adanya hubungan yang signifikan antara asupan Omega 3 asam lemak dan timbulnya beberapa jenis kanker.

Depresi, kelelahan, kulit kering dan gatal, rambut dan kuku rapuh dan sakit sendi adalah beberapa gejala kekurangan Omega 3 dalam tubuh. Konsumsi Omega 3 yang berlebihan dapat meningkatkan risiko perdarahan dan stroke hemorrhagic. Jadi konsumsilah sesuai dosis yang tepat.


Senyawa Pada Tempe Faktor-2 (6,7,4’-trihidroksi isoflavon)

Senyawa Pada Tempe Faktor-2 (6,7,4′-trihidroksi isoflavon)

Isoflavaonoid adalah salah satu golongan senyawa metabolit sekunder yang banyak terdapat pada tumbuh-tumbuhan, khususnya dari golongan leguminoceae (tanaman berbunga kupu-kupu). Isoflavaonoid termasuk dalam golongan flavonoid (kelompok senyawa fenol) dengankerangka dasar 1,2-diarilpropan. Senyawa isoflavon pada umumnya berupa senyawakompleks atau konjugasi dengan senyawa gula melalui ikatan glikosida (Snyder, 1987).

Kedelai memiliki kandungan isoflavon yang tinggi, khususnya pada bagian hipokotil (germ)yang akan tumbuh menjadi tanaman. Kandungan isoflavon pada kedelai berkisar antara 2-4mg/gram kedelai. Jenis senyawa isoflavon utama pada kedelai adalah genistin, daidzin, danglistin. Bentuk senyawa demikian ini mempunyai aktivitas fisiologi kecil karena beradadalam bentuk glikosida.

Selama proses pengolahan, baik melalui proses fermentasi maupun proses non-fermentasi,senyawa isoflavon dapat mengalami transformasi, terutama melalui proses hidrolisasehingga diperoleh senyawa isoflavon bebas yang disebut dengan aglikon yang memilikiaktivitas lebih baik. Senyawa aglikon adalah genestein, glisitein, dan daidzein.

Hasil transformasi lebih lanjut dari senyawa aglikon menghasilkan senyawa yangmempunyai aktivitas biologi lebih tinggi yaitu faktor-2 (6,7,4′-trihidroksi isoflavon). Hal iniditunjukkan oleh Murata yang membuktikan bahwa faktor-2 (6,7,4′-trihidroksi isoflavon)mempunyai aktivitas antioksidan dan antihemolitik lebih baik dari daidzein dan genistein(Murata, 1985). Struktur dari keempat jenis isoflavon tersebut dapat dilihat pada gambar di bawah ini:


Struktur Isoflavon (Braz dkk, 1993)Faktor-2 tidak terdapat pada kedelai tetapi hanya terdapat pada tempe. Senyawa ini mula-mula ditemukan oleh Gyorgy pada ekstrak tepung tempe (Gyorgy, 1964). Penelitian tersebutmenunjukkan bahwa pada tempe hasil fermentasi dengan Rhizopus Oligosporusmenghasilkan isoflavon genistein (5,7,4′-trihidroksi isoflavon, daidzein (7,4′-dihidroksiisoflavon) dan faktor-2 (6,7,4′-trihidroksi isoflavon).

Menurut penelitian (Barz dkk, 1985). Faktor-2 dibentuk melalui demetilasi glisitein ataumelalui reaksi hidroksilasi daidzein. Daidzein dan glisitin pada biji kedelai yang terikatdengan glukosa melalui ikatan glikosida dapat dihidrolisis oleh enzim β-glukosidase selama proses perendaman kedelai. Penelitian Barz menunjukkan terbentuknya faktor-2 dapatdimulai dengan hidroksilasi gugus C-6 dari daidzein atau demetilasi gugus C-6 dari glisitein.

Aktivitas fisiologis senyawa isoflavon telah banyak diteliti dan ternyata menunjukkan bawa berbagai aktivitas berkaitan dengan struktur senyawanya. Aktivitas isoflavon sebagaiantioksidan ditentukan oleh bentuk struktur bebas (aglikon) dari senyawanya (Murakami,1984). Aktivitas tersebut ditentukan oleh gugus –OH ganda, terutama dengan gugus C=O pada posisi C-3 dengan gugus –OH pada posisi C-6 atau pada posisi C-4. Gugus dihidroksi pada posisi orto menyebabkan faktor-2 mempunyai sifat antioksidan yang lebih kuatdibandingkan dengan genistein, daidzein dan glisitein (Prat, 1985).

Menurut Handayani (2006), faktor-2 memiliki afinitas ikatan jauh lebih tinggi dibandingkandengan isoflavon lain karena memiliki tiga gugus hidroksil pada posisi C-6, C-7 dan C-4’sehingga probabilitas untuk berinteraksi secara ikatan hidrogen menjadi lebih tinggi. Ikatanhidrogen penting dalam pengikatan ligan oleh reseptor/protein.

Isoflavon pada tempe yang aktif sebagai antioksidan, yaitu 6,7,4′-trihidroksi isoflavon,terbukti berpotensi sebagai anti-kontriksi pembuluh darah pada konsentrasi 5µg/ml dan juga berpotensi menghambat pembentukan LDL. Dengan demikian isoflavon dapat mengurangiterjadinya arteriosclerosis pada pembuluh darah (Jha, 1985).