“Allahumma tawwi umurana fi ta’atika wa ta’ati rasulika waj’alna min ibadikas salihina”

Antimikroba Alami Dari Hewan

Antimikroba Alami Dari Hewan

created by mahasiswa ITP-FTP UB 2006

Antimikroba alami dapat ditemukan pada tanaman, mikroba, serangga, maupun hewan. Pada susu dan produk turunan susu dapat ditemukan senyawa antimikroba lactoferrin, lysozyme, lactoperoksidase, dan lactoglobulin. Pada telur dapat ditemukan senyawa antimikroba ovotranferrin, lysizyme, ovoglobulin, imunoglobin Y, dan avidin. Senyawa antimikroba tersebut merupakan polipeptida yang memiliki kemampuan dalam merusak membran sel tertentu dengan cara yang berbagai macam, contohnya dengan mengoksidasi, menghambat interaksi reseptor ligan pada sel, pengambilan zat besi dari sel, dan bertindak seperti antibody. Efektifitas penghambatan dari senyawa antimikroba akan lebih maksimal jika beberapa senyawa antimikroba digunakan secara bersama-sama. Penggunaan antimikroba alami pada produk pangan akan memberikan dampak positif pada konsumen, contohnya: meningkatkan ketahanan susu dan telur secara alami, penambahan transferrin, lactoperoxidase, dan imunoglobin yang bermanfaat bagi kesehatan secara langsung, dan penggunaan lactolipid, immunoglobulin, dan transferrin pada susu formula untuk bayi.

A. Lactoperoxidase

Lactoperoxidase (LP) dapat ditemukan di susu, air mata, dan air ludah. Lactoperoxidase menjadi antimikroba karena sifatnya yang mampu menghambat kerja enzim hexokinase dan G3P dehydrogenase. Lactoperoxidase mampu menghambat pertumbuhan bakteri, jamur, parasit, dan virus.

  • Bagian Molekul
    • Biosintesis

LP dibentuk pada sel epitel kelenjar susu dan kelenjar eksokrin. LP tersusun dari 1% (10-30µg/ml) whey protein susu dan konsentrasinya tergantung dari cara pemberian makan, iritasi ambing, dan tingkat esterogen. Konsentrasi LP pada susu sapi lebih banyak 20kali dibandingkan pada susu manusia. Tiosianat merupakan komponen penting terhadap aktivitas antimikroba LP. Pada susu sapi, konsentrasi LP dalam kolostrum cukup rendah dan akan meningkat setelah 4-5hari kelahiran.

  • Isolasi dan purifikasi

Isolasi LP dilakukan dengan cara pemisahan kasein dengan rennet, absorbs whey protein dengan ion-exchange, elusi, fraksinasi, dan pemurnian akhir. Perlakuan ion-exchange dilakukan dalam kolom yang berisi buffer sodium asetat. Pemurnian LP dilakukan dengan cara elusi kolom menggunakan sodium asetat, pengaturan konsentrasi dari bahan elusi, fraksinasi dengan kromatografi, dan fraksinasi lanjutan dengan menggunakan borat.

  • Struktur kimia

LP tersusun dari satu ikatan peptida lurus yang tersusun oleh 612 asam amino dengan berat sekitar 80 kDa dengan delapan ikatan disulfide. LP merupakan heme yang tersusun dari enzim yang mampu memecah 50-70% ikatan asam amino menggunakan myeloproxidase, thyroperoxidase, dan eosinophilperoxidase. LP tersusun dari 0,07% besi yang setara dengan 1 atom besi berikatan dengan 1 molekul LP.

  • Stabilitas

Pada kondisi udara minimal, LP akan berkurang 35% pada konsentrasi tiosianat selam 18bulan dan tetap kuat membunuh 106 CFU/ml pada 4 mikroba yang diuji. Pada kondisi udara normal, aktifitas tiosianat hilang setelah 7hasi penyimpanan, tetapi setelah 516 hari tetap mampu mebunuh 106 CFU/ml Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, dan E. coli selama 2-4jam. Pada perlakuan pasteurisasi 70ºC selama 15menit, LP berkurang sebanyak 75% akibat denaturasi LP. Kestabilan terhadap suhu akan menurun apabila diberi perlakuan pH rendah (5,3) akibat lepasnya kalsium dari struktur LP. LP akan rusak pada pH 3 dan akan tetap aktif hingga pH 10.

  • Aktivitas antimikroba
    • Cara kerja

LP merupakan enzim yang berfungsi mengoksidasi tiosianat dan beberapa halide (Iˉ dan Brˉ) menhasilkan H2O2 yang mampu membunuh atau menghambat pertumbuhan beberapa spesies mikroorganisme. Langkah pertama dari penghambatannya yaitu memulai LP (Fe3+) pada tahap awalnya oleh H2O2 diikuti dengan reaksi propagasi yang mengubah LP tahap awal menjadi senyawa I. pada konsentrasi tiosianant dan halide yang rendah, senyawa I bereaksi dengan semua 1donor electron yang kemudian menjadi senyawa II. Dengan H2O2 berlebih maka senyawa II berubah menjadi senyawa III. Ini mengaktifkan ferrylperoxidase untuk menginaktifasi LP. Dengan SCNˉ, OSCNˉ (hypothiocyanate), dan HOSCNˉ (hypothiocyanous acid) pada kondisi keseimbangannya, dan pH pada kondisi aktifitas LP maksimal (pH 5,3) maka jumlahnya akan sama dengan aktivitas antimikrobia yang kuat.

  • Spesifisitas

Sel mamalia tidak akan berubah akibat antimikroba LP akan tetapi melindungi sel manusia terhadap racun yang dihasilkan oleh H2O2. LP menyerang membran sitoplasma atau sitoplasma sehingga mengakibatkan permeabilitas membrane sel menjadi berkurang atau hilang. LP juga dapat menyerang enzim  glikolisis pada mikroba sehingga metabolismenya tidak bekerja semestinya. Efek dari antimikroba LP bergantung pada jenis mikroorganisme, jenis donor electron yang dimilikinya, suhu, pH, lama inkubasi, dan factor lainnya. LP bersifat membunuh (bakteriosidal) pada bakteri gram negative katalase positif dan bersifat menghambat (bakteriostatik) pada bakteri gram positif katalase negatif.

  • Aplikasi pada produk pangan

LP digunakan sebagai biopreservative pada dairy product dan semakin meningkat produksinya dalam isolasi LP dari susu dan whey. LP digunakan pada produk susu untuk meningkatkan umur simpan. Terdapat 2 enzim yang mampu mengaktifkan LP pada susu yaitu β-galactosidase dan glucose oxidase sehingga susu semakin tahan lama saat disimpan. Aktifnya LP mengakibatkan menurunnya bakteri alami pada susu dan menghambat pertumbuhan bakteri psikrofil selama 5 hari. Untuk meningkatkan daya simpan susu, dapat digunakan kombinasi LP dengan pengaturan tingkat keasaman susu sehingga produk susu menjadi lebih aman untuk dikonsumsi. Kombinasi LP dengan nisin menghasilkan penghambatan bakteri L. monocytogenes yang maksimal pada susu, contohnya yoghurt. Dengan penambahan LP maka umur simpan susu segar disimpan pada suhu 4ºC dapat mencapai 4 hari, 3 hari pada suhu 10ºC, umur simpan susu pasteurisasi selama 21 hari pada suhu 10ºC, keju selama 8hari pada suhu 4-7ºC, dan yoghurt selama 14 hari pada suhu 20ºC.LP juga dapat digunakan pada produk-produk kesehatan seperti pasta gigi, biofilm, dan pengawet alami makanan.

B. Transferrins

  • ü Lactoferrin, Lactoferrin B, dan Activated Lactoferrin

Lactoferrin (LF), lactotransferrin atau lactosiderophilin merupakan senyawa bioaktif berupa glycoprotein yang berfungsi sebagai agen pengontrol besi pada cairan biologis. Transferrin dibagi menjadi 2 kelompok, yaitu melanotransferrin dan glikoprotein larut air yang terbagi lagi menjadi 2 jenis transferrin unggas, yaitu serum transferrin dan ovotransferrin. LF mempu berikatan dengan dua Fe3+ dalam kombinasinya bersama dua ion CO32-. LF dapat ditemukan pada susu, permukaan sel epitel intestinal, kelenjar sekresi aksokrin mamalia seperti air liur, air mata, dan air mani, dan granula cadangan dari polymorphonuclear neutrophil atau limposit. Manusia dan babi memiliki LF 10kali lebih banyak dibandingkan sapi, tetapi akan lebih banyak pada sapi apabila sapi tersebut terserang infeksi mastitis. LF memegang peranan penting dalam penyerapan logam dalam pencernaan, penggunaan mikronutrient dan makronutrient dari susu, penekanan myeopoiesis, menjaga flora intestinal pada hewan muda terhadap enteropatogenik bakteria, menjaga ambing dari penyakit mastitis, dan berfungsi sebagai penjaga ketahanan tubuh. LF merupakan antioksidan yang juga antimikroba aktif terhadap bakteri, jamur, protozoa, virus, dan tumor.

Lactoferricin (LFcin) merupakan peptida aktif yang berasal dari hidrolisis polipeptida manusia. LFcin lebih efektif daripada LF dalam sifatnya sebagai antimikroba. Activated transferrin (ALF) berasal dari LF yang ditemukan permukaan daging dan bertindak sebagai penghambat pertumbuhan bakteri patogen. ALF berfungsi sebagai agen penghambat yang bercampur dengan koloni mikroba yang kemudian membunuh mikroba tersebut atau menghambat perkembangbiakan mikroba dan netralisasi racunnya. ALF sudah masuk kedalam golongan GRAS karena terdapat alami dalam susu bersama LF dan terbukti mampu menghambat pertumbuhan kontaminasi bakteri selama proses pengolahan.

  • Molekul
    • Biosintesis

LF dapat ditemukan pada susu sapi dan manusia sebanyak 20-200 mg/L dan >2000mg/L. tingkat tertinggi LF (5-7gr/L) ditemukan pada kolostrum dan menurun bertahap selama 7 kali menyusui. Pada plasma susu ditemukan pada konsentrasi yang rendah (sekitar 0,2-1,6µg/ml), sedangkan pada  susu sapi yang terserang mastitis mengandung LF yang lebih tinggi dibandikan dengan yang sehat.

  • Isolasi dan purifikasi

Isolasi LP dari susu mamalia dapat menggunakan kromatografi CM-Sephadex, Cibachon Blue-Sepharose, heparin-cross-linked dan DNA-agarose columns. Prosedurnya yaitu melalui ion exchange kromatografi untuk memisahkan dari protein susu dan melalui kationik kuat dan anionik kuat exchanger untuk memisahkan N-terminal. Kandungan LF pada whey keju sekitar 100mg/L karena merupakan kationik alami sehingga mudah diserap oleh kation exchanger yang dielusi menggunakan larutan garam.

Produksi ALF didasarkan pada LF susu elalui gugus N-terminalnya dalam glycosaminoglycan seperti galaktosa yang diperkaya polisakarida atau karagenan dengan menghilangkan faktor-faktor yang menyebabkan menurunnya aktifitas LF. Pergerakan ALF didasarkan pada reaksi netralisasi peptida kation oleh garam, optimalisasi kondisi Ph substrat dengan pengaturan rasio sitrat dan bikarbonat, dan menjaga keseimbangan LF yang berikatan maupun tidak berikatan seperti tahap in vitro aktifasi LF.

  • Sifat kimia

LF merupakan rantai polipeptida tunggal dengan berat molekul 75-80kDa dan terdiri dari sekitar 690 asam amino penyusun. Asam amino penyusunnya terdiri dari 16-18jenis asam amino yang berbeda dengan 8jenis yang utama dan yng lainnya berbeda-beda tergantung dari jenis mamalia. Titik isoelektrik LF berkisar antara 5,5-10 dengan kisaran yang lebih sempit adalah 8. Ketahanan panas LF berkisar 90ºC selama 60menit dan berubah-ubah berdasarkan ikatannya dengan besi dan pH substrat. LF yang berikatan dengan besi secara jenuh akan lebih tahan terhadap panas/ bentuk holo (87±3ºC) jika dibandingkan dengan LF yang berikatan dengan besi secara tak jenuh/ bentuk apo (67±3ºC). LF akan lebih mudah terdenaturasi pada pH netral daripada pada pH rendah (LF stabil pada pH 4). LF berikatan dengan Ca2+ akan meningkatkan kestabilannya terhadap panas sebesar 9ºC.

  • Struktur

LF merupakan struktur ampipatik yang memiliki bagian kationik yang kuat pada N-terminal. Memiliki struktur 3dimensi pada manusia dan 2.8Å pada hewan. Struktur LF melipat pada bagian N dan C sehingga berukuran globular yang stabil akibat ikatan disulfida yang membentuk struktur α-helix. LF memiliki kemampuan untuk mengikat berbagai jenis logam tanpa merubah bentuk strukturnya. Sisi anion LF merupakan bagian yang mampu mengikat Fe2+ atau Cu2+ termasuk karbonat, sitrat, oksalat, dan kompleks karbonat-oksalat.

LFcin dibentuk dengan menghidrolisis LF dari sapi maupun manusia dengan menggunakan protease yang berbeda. LFcin sapi (yang disebut lactoferrin B atau LFcinB) tersusun dari 25 asam amino yang berikatan dengan 17-41 N-terminal LF. LFcin manusia (disebut lactoferrin H atau LFcinH) tersusun dari 47 asam amino yang berikatan dengan 1-47 N-terminal LF manusia. LFcinB dan H memiliki bentuk yang sirkular dengan berat 3126 dan 5558 yang terhubungkan oleh ikatan-ikatan disulfida.

  • Aktivitas antimikroba
    • Cara kerja

Aktivitas antimikroba dari LF bekerja berdasarkan dari kesesuaian protein dan kondisi substrat. Terdapat 2 faktor yang mempengaruhi efek antimikroba dan ketahanan bakteri inang, yaitu kekuatan pengikatan ion besi dan kekuatan berinteraksi dengan molekul pada permukaan inang. Struktur ampipatik dan muatan potsitif yang kuat pada kationik kuat bagian N-terminal mempengaruhi kemampuan LF dalam berinteraksi dengan membran mikroba. Molekul yang mampu berinteraksi dengan LF adalah glycosaminoglycans dari epithelial milieu, kolagen, fibronectins, dan DNA dari sel mamalia.

Sifat antimikroba LF dapat menghambat pertumbuhan bakteri, virus, jamur, dan protozoa. LF bersifat bakteriostatik ataupun bakteriosidal berdasarkan dari karakteristik mikroba yang diserangnya. Pada bakteri seperti E.coli, Neisseria sp, Moraxella catarrhalis, dan Vibrio sp. memiliki mekanisme penolakan terhadap pengikatan besi sehingga mampu bertahan terhadap antimikroba LF. Sifat bakteriostatik LF dapat menurun akibat ketahanan mikroba, ketidaktepatan rasio antara sitrat dan bikarbonat, bikarbonat yang mudah berikatan dengan besi, dan sitrat yang bersaing dengan LF untuk berikatan dengan besi, oleh karena itu besi masih dapat digunakan mikroba untuk tumbuh.

Aktivitas bekterisidal LF didasarkan pada pengikatan besi dan pengikatan muatan positif LF dengan muatan negatif pada membran luar mikroba yang mengakibatkan dispersi pada lipopolisakarida, meningkatnya permeabilitas membran, dan matinya sel. Tertutupnya permukaan sel oleh fimbriae dan adhesin lainnya dan pembentukan antigen oleh sel menyebabkan barubahnya mekanisme antimikriba LF. LF berikatan dengan permukaan sel patogen efektif pada pH 6 dan 7,5 untuk E.coli dan B.subtillis. Interaksi antara LF dan LFcin menyebabkan aktifitas fungicidal.

Perbedaan urutan asam amino pada LFcinB menyebabkan perbedaan lama waktu penetrasi dalam sel S.aureus dan E.coli sebesar 15 menit. Pada konsentrasi LFcinB sebanyak 30-100µgr/ml perubahan morfologi sel, menurunnya tingkat polaritas membran sel,  destabilisasi liposome, bocor dan berubahnya susunan liposome, tetapi tidak menyebabkan sel lisis.

Efek antimikroba dari antibiotik dikeluarkan membran sel terluar dari gram negatif dengan meningkatnya LFcin yang mendestabilisasi membran sel dan meningkatkan kemampuan penetrasi. Antibiotik lain seperti polymyxins yang beraksi pada membran sel akan bersaing dengan LFcin dalam efek antimikroba. LFcinB berinteraksi dengan penicilin melawan S.aureus dan dengan erythromycin melawan E.coli, bersifat berlawanan jika bersama dengan gentamicin melawan S.aureus. Mycrocyclin dan komponen lain (seperti asam, alkohol, dan asilgliserol) meningkatkan aktivitas antimikroba dari LFcinB melawan strain resisten antibiotik S.aureus.

Mekanisme antivirus dari LF adalah sebagai berikut: pencegahan infeksi virus dengan pengikatan LF dengan partikel virus (anvelope protein), memotong virus dalam sel dengan pengikatan LF dengan sulfat proteoglikan atau dengan reseptor virus pada permukaan sel, menghambat perkembangbiakan virus, aktifitas LF yang bekerjasama dengan sintesis antigen virus, dan mekanisme lain yang secara tidak langsung. Faktor yang mempengaruhi aktivitas antivirus yaitu tahap infeksi, komponen lain yang berinteraksi dengan LF, dan tingkat kejenuhan LF dalam mengikat logam.

ALF merupakan turunan dari LF yang bersifat antimikroba dengan mekanisme sebagai berikut: menghambat penempelan mikroba, pelepasan bakteri, dan penghambatan pertumbuhan mikroba. Interaksi ALF dengan membran luar sel mengganggu sintesa ahesin/fimbrial dan mendorong bakteri untuk melekat pada komponen lembar matrik. Pengikatan besi mengakibatkan terganggunya sintesis ATP dan pembelahan sel sehingga perkembangbiakannya terhambat. Interaksi ALF dengan asam nukleat menunjukkan adanya aktivitas antivirus.

  • Spesifitas

LF memiliki spektrum penghambatan yang luas, termasuk gram negatif dan gram positif seperti Helicobacter pylori, E.coli O157:H7, E.coli O111, B.subtilis, S.aureus, Proteus mirabilis, Klebsiella pneumoniae, P.aeruginosa, Lmonocytogenes, Micrococcus flavus, Salmonella thyphimurium, yaest Candida sp., jamur Rhodotorula rubra, Penicillium sp., Trichophyton sp, RNA dan DNA, enveloped dan nonenveloped virus, protozoa Toxoplasma gondii, Giardia lamblia, dan Tritrichomonas foetus.

Hidrolisa LF (LFcin) dan LFcinB lebih bersifat menghambat jika dibandingkan dengan LF. LFcin manusia lebih aktif jika dibandingkan dengan LFcin sapi, murine, caprine. Minimum Inhibotory Concentration (MIC) LF sapi dan manusia sebanyak 2000µg/ml dan 3000µg/ml, sedangakan LFcinH sebanyak 100µg/ml dan LFcinB sebanyak 6µg/ml dalam menghambat pertumbuhan E.coli O111. MIC LFcinB lebih rendah jika dibandingkan dengan LF sapi dalam menghambat mikroorganisme  K.pneumoniae, P.aeruginosa, S.aureus, dan L.monocytogenes.

Caprine LFcin memiliki efektifitas tertinggi dengan diikuti bovine dan ovine dalam melawan E.coli dan M.flavus. Dalam percobaan bentuk apo LF melawan E.coli dan S.typi dibandingkan dengan melawan probiotik (Bifidobacteria) menunjukkan turunnya koloni patogen tanpa mempengaruhi koloni probiotik. Ini memberikan efek yang menguntungkan jika LF digunakan dalam makanan.

LF dan LFcin memiliki efek fungisidal pada jamur Candida albicans, C. glabrata, C.krusei, Rhodotorula rubra, spora Penicillium sp., dan Trichophyton sp. LF dan hidrolisat LF mampu menghambat pertumbuhan protozoa seperti Toxoplasma gondii, Giardia lamblia, dan Chomonas foetus. Selain itu, LF juga memiliki kemampuan antivirus yang luas spektrumnya, dari manusia, hewan DNA dan RNA, enveloped atau tidak. Akan tetapi, LFcin tidak memiliki aktivitas antivirus samasekali.

  • Aplikasi pada produk pangan

LF sudah tersedia dalam bentuk siap pakai berbentuk bubuk. Ini digunakan untuk mengikat logam pada formula makanan Asia Selatan. LF juga sukses dimasukkan dalam baras transgenik sebanyak 0,5% dengan ikatan sintetis LF dengan glutelin. LF, LFcinH, dan LFcinB memiliki kemampuan dalam menyembuhkan penyakit pada ikan dan makanan laut. Akan tetapi, aplikasi komponen-komponen ini masih terbatas karena tingginya dosis yang dibutuhkan untuk mengawetkan makanan. Pengaruh LF terhadap Ph, tingginya kandungan kalsium atau fosfat, kelebihan kation (terutama besi), dan ketidaktepatan rasio antara sitrat dan bikarbonat menyebabkan menurunnya aktivitas dari LF. Aktivitas antimikroba akan dibalik oleh adanya tripsin, ferrous sulfat, megnesium sulfat, dan hematin. Alternatif yang digunakan untuk mengatasi pembatasan penggunaan LF antara lain: aktivasi LF pada kondisi yang melindungi strukturnya dan mengurangi kerusakan akibat kondisi lingkungan dan peningkatan penyerapan LF.

LFcinB diuji pada daging sapi dengan konsentrasi 50-100µg/ml, dimana ini menyebabkan penurunan mikroba hingga maksimal 2 log10­CFU/g pada suhu 4-10ºC. LFcinB konsentrasi 1600µg/ml tidak mampu menghambat pertumbuhan E.coli pada suhu 37ºC, tetapi setelah ditambahkan 400µg/ml EDTA, ini mampu menghambat pertumbuhan E.coli dan L.monocytogenes secara total. Penggunaan kombinasi ini pada pengolahan susu UHT membuat susu bebas dari adanya mikroba.

Kombinasi LF dan LFcinB dengan tekanan tinggi (155 – 400mPa) memberikan efek bekteriosidal  terhadap E.coli, Salmonella enteritidis, S, typi, Shigella sonnei, S.flexneri, P.flourescens, dan S.aureus dalam buffer potasium fosfat pada suhu 20ºC. LFcinB memberikan efek antimikroba yang lebih tinggi jika dibanding LF bovine, akan tetapi dengan kombinasi tekanan 400mPa menyebabkan LF bovine memiliki efek antimikroba yang lebih tinggi jika dibanding LFcinB. 20 µg/ml LFcin dikombinasi dengan tekanan 100-270mPa selama 15 menit dalam buffer fosfat mampu mereduksi S.typhimurium dan P.aeruginosa sebanyak 1-2 log10 dan 3-5 log10 tergantung dari strainnya dan penggabungan dengan perlakuan tekanan tinggi dan LFcinB.

ALF memiliki efek bakteriostatik terhadap E.coli pada broth, steak sapi, dan daging sapi segar. MIC ALF dan LF sebanyak 62 µg/ml dan >1000 µg/ml. ALF mampu mengawetkan daging sapi selama 35hari pada suhu 3,3ºC dalam kondisi vakum dan menghambat pertumbuhan mikroba patogen seperti L.monocytogenes, Salmonella sp., dan beberapa mikroba pembusuk seperti Pseudomonas sp., dan Klebsiella sp. Kombinasi antara ALF, LF, dan asam laktat 2% dalam kondisi vakum pada suhu 10ºC selama 33hari mampu menghambat pertumbuhan bakteri E.coli O157:H7, L.monocytogenes, dan S.typhimurium.

  • Keamanan dan toleransi

LF bovin telah dikonsumsi manusia melalui susu sapi dengan konsentrasi 50-75mg/hari. Efek merugikan dari LF terjadi pada penyerapan zat besi, pertumbuhan mikroflora, dan pencegahan infeksi pada manusia. Tidak terjadi efek negatif apabila konsumsi LF berkisar antara 0,3-1gr/kg/hari selama 11hari hingga 5bulan penggunaan dan 1,7-60mg/kg/hari untuk sekali konsumsi selama 8minggu untuk orang dewasa.

LF tergolong dalam GRAS dengan batas penggunaan sebanyak 100mg/sajian dengan batas asupan per hari sebesar 1gram per orang. LF bovin tergolong dalam GRAS saat digunakan pada daging sapi segar dengan konsentrasi maksimal 2%. Perkiraan konsumsi perhari pada produk ini sebesar 4,1mg/orang/hari. ALF yang berasal dari susu juga masuk dalam golongan GRAS dengan batas 65,2mg/kg daging sapi.

ü  Ovotransferrin

Ovotransferrin (OTF) merupakan monomer glikoprotein yang mampu mengikat besi dan terdapat pada putih telur sebanyak 10-12%. Isolasi dan purifikasi OTF dapat dilakukan dengan fraksinasi solven dan metode kromatografi. Banyak terdapat kemiripan asam amino pada keluarga Transferrin, termasuk OTF, yaitu memiliki total asam amino 680-700, memiliki 1 ujung C dan 1 ujung N dengan 35-40% kesamaan. Kesamaan OTF dengan LF manusia berkisar antara 49-51%.

Seperti LF, OTF mampu mengikat dua ion Fe3+ per molekul dengan dua bikarbonat anion. Ini menunjukkan kemampuannya dalam menghambat pertumbuhan mikroba. Kejenuhan OTF dalam mengikat besi menurunkan kemampuannya dalam menghambat pertumbuhan mikroba terutama gram negatif. Aktivitas antimikroba OTF bergantung pada kondisi lingkungan dan mikroorganisme target. pH alkali dan meningkatnya suhu hingga 40ºC meningkatkan efektifitas dari aktifitas antimikroba OTF.

OTF memiliki efek bakteriostatik dengan pengikatan zat besi pada bakteri Pseudomonas sp., E.coli, S.aureus, Proteus sp., Bacillus sp., dan Klebsiella sp, dan golongan yeast seperti Candida sp.

OTF sensitif terhadap panas dan 80% aktifitas akan hilang dengan pemanasan 70-79ºC selama 3menit atau 60ºC selama 5 menit. Adanya ikatan dengan logam akan meningkatkan ketahanan OTF terhadap panas.

C. Immunoglobulins

Imunoglobulin atau antibodi adalah campuran kompleks heterogen glikoprotein yang dihasilkan oleh sel plasma (limfosit atau immunocytes) yang ada pada membran B-sel atau yang disekresi oleh sel plasma. Ig merupakan efektor dari sistem immun yang bertanggung jawab untuk mengikat molekul antigen asing yang spesifik pada host untuk memberi reaksi immune dan pembersihan zat asing maupun efek yang merugikan. Ig mampu mengikat dan menetralisir bakteri, virus, polisakarida, nukleutida, peptide, dan protein. Kebutuhan Ig dalam tubuh cukup besar untuk mengenali dan menangkal semua antigen (Ag) yang berbeda. Fungsi utama Ig adalah sebagai berikut: (1) ikatan Ag, ikatan Ig untuk satu atau lebih antigen yang berdekatan melalui antigen determinan, (2) Ig tidak memberikan efek biologis secara langsung terhadap Ag dan fungsi efektor adalah untuk membantu menyususn jarak Ag dan biasanya didahului dengan pengikatan Ag. Fungsi efektor dapat mencakup (1) komplemen fiksasi (sekelompok protein serum yang menggunakan enzim untuk menghasilkan serangan kompleks membran cytolytic dan menghasilkan sel lisis melalui pelepasan molekul biologis aktif), dan (2) mengikat berbagai jenis sel seperti sel phagocytic, limfosit, platelet, sel mast, dan Basofil yang memiliki reseptor yang dapat mengikat Ig dan mengaktifkan sel-sel.

ü  Lactoglobulins

Kolostrum sebagai sumber untuk transportasi faktor immune, termasuk Ig dari ibu ke bayi yang baru lahir. Kolostrum digunakan untuk produksi komersial dan pemurnian Ig sebagai antimikroba untuk mencegah dan mengobati penyakit pada manusia. Ig diperoleh dari sumber komersial, termasuk kolostrum dan susu dari hewan ternak, telur, dan kultur sel. Tetapi sumber yang paling praktis adalah dari kolostrum dan susu sapi maupun telur unggas.

  • Bagian Molekul
    • Biosintesis

Gen untuk bagian V dan C pada kromosom yang sama mempunyai ekson yang terpisah oleh intron, dan mRNA (messenger RNA) yang dihasilkan dari gen ini bergabung menjadi satu rangkaian untuk melepaskan intron, bagian V dan C bergerak semakin dekat secara bersama-sama sehingga menghasilkan rantai H atau L yang fungsional. Kumpulan rantai H dan L menjadi molekul yang lengkap terjadi ketika molekul sistein membentuk ikatan disulfid, baik persilangan dari dua rantai H atau kombinasi dari rantai H dan L. Molekul Ig disintesis dalam kelas limfosit yang dikenal sebagai sel beta (B-sel), yang dapat berdiferensiasi kedalam sel plasma ketika aktif dan mengeluarkan Ig.

  • Isolasi dan Pemurnian

Susu lebih banyak tersedia tetapi konsentrasi Ig dalam susu relatif rendah dibandingkan dengan kolostrum. Kesulitan yang terkait dengan isolasi Ig dari susu adalah susu sebagian besar dipasteurisasi dan whey kemungkinan akan terkena panas, yang menyebabkan hilangnya aktivitas fraksi Ig dan penurunan efektivitas antimikroba. Proses dasar isolasi Ig dan pemurnian dari kolostrum sapi dan whey susu tergantung pada konsentrasi awal dan diafiltration pada whey dengan menggunakan teknik ultrafiltrasi diikuti dengan langkah-langkah purifikasi dengan kromatografi ion exchange untuk memisahkan fraksi protein lain dan menghasilkan kemurnian dengan nilai gizi yang tinggi.

  • Struktur Kimia

Semua molekul Ig adalah glikoprotein simetris yang merupakan monomer atau polimer dari empat rantai polipeptida yang terdiri dari dua rantai light (L) nonglikosilasi identik dan dua rantai heavy (H) glikosilasi identik yang berikatan bersama dengan ikatan disulfida. Rantai H dan L tiap molekul mempunyai bagian konstan (C) dan bagian variable atau yang berubah-ubah (V). Bagian V terdiri dari sekitar 100 asam amino yang dekat dengan ujung N, sedangkan bagian C membentuk sisa molekul menuju ujung C.

  • Stabilitas

Stabilitas molekul Ig selama proses dipengaruhi oleh perlakuan termal, dan meskipun Ig sensitif panas, sebagian besar aktivitas Ig akan bertahan pada suhu pasteurisasi. Penggunaan teknik pasteurisasi suhu tinggi/waktu yang singkat (HTST) menyebabkan hanya 10% sampai 30% kehilangan aktivitas Ig, sedangkan proses UHT dan evaporasi merusak hampir semua aktivitas immun. Denaturasi termal pada Ig dihambat dengan meningkatnya konsentrasi padatan susu. Aktivitas antimikroba pada Ig tidak akan terpengaruh pada suhu penyimpanan, dan dapat bertahan sampai dengan 12 bulan pada penyimpanan suhu 4oC, 20oC, dan 37oC.

  • Aktivitas antimikroba
    • Cara Kerja

Kolostrum sapi dan susu mengandung banyak zat alami antimikroba termasuk sistem antibodi komplemen dan aktivitas antibodi antigen yang saling melengkapi. Sistem antibodi komplemen dianggap sebagai salah satu aktivitas antimikroba yang utama dalam kolostrum. Komponen didalamnya terdiri lebih dari 20 protein yang berbeda dan melibatkan enzim yang dapat diaktifkan oleh interaksi Ag-Ig (classical pathway), dengan karbohidrat tertentu (lectin pathway), atau dengan permukaan yang tidak dilindungi oleh inhibitor alami (alternative pathway). Aktivasi classical pathway melibatkan pengikatan komponen pelengkap pertama pada interaksi Ag-Ig atau langsung ke mikroba, sedangkan apabila tidak ada Ig aktivasi komplemen terjadi melalui lectin pathway dengan lectin yang terikat pada permukaan patogen atau melalui alternative pathway yang melibatkan adanya komponen membran sel bakteri seperti lipopolysaccharides.

  • Spesifisitas

Molekul Ig adalah salah satu antimikroba yang paling efektif untuk patogenik termasuk bakteri, virus, jamur, protozoa, racun, dan molekul protein atau polisakarida lainnya. Mekanisme yang digunakan oleh Ig yaitu, Ig mengikat komponen permukaan sel yang spesifik pada mikroorganisme dan membentuk sebuah pertahanan untuk mencegah mikroba berikatan pada permukaan reseptor sel inang.

  • Aplikasi pada produk pangan

Whey komersial atau colostral Ig telah digunakan selama bertahun-tahun sebagai suplemen pakan ternak, terutama yang baru lahir, untuk memberantas penyakit menular dan telah terbukti berguna terutama untuk penyakit diare. Baru-baru ini, produk komersial yang mengandung susu Ig telah dikembangkan dan dipasarkan untuk mencegah atau mengobati penyakit yang disebabkan oleh bakteri.

ü  Ovoglobulins

Sama seperti mamalia yang memproduksi Ig dalam serum dan laktasi, spesies burung domestik seperti ayam, kalkun, dan itik juga memproduksi Ig dalam serum dan telur. Ig dalam serum unggas ditransfer ke kuning telur untuk memberikan keturunan dengan imunitas terhadap penyakit unggas dan Ag lainnya.

  • Bagian Molekul
    • Biosintesis

Darah unggas mengandung 3 jenis Ig, yaitu IgG, IgM, dan IgA. IgG terdiri dari sekitar 75% dari total Ig, IgG (dikenal sebagai IgY dalam kuning telur) yang ditransfer dari serum maternal ke kuning telur kemudian sirkulasi melalui endoderm dari kantong kuning telur, sedangkan IgM dan IgA juga dikeluarkan ke dalam kantung telur dan dimasukkan ke dalam telur melalui oviduck, selanjutnya Ig ditransfer ke usus embrio.

  • Isolasi dan Pemurnian

Kuning telur dapat dipisahkan dengan sentrifugasi menjadi partikel-partikel dan supernatan atau plasma. Bagian plasma sekitar 78% dari total kuning telur dan tersusun dari globular protein lemak bebas, livetin (yang ada dalam tiga bentuk, α-, β- dan γ-livetin atau IgY). Livetins adalah protein larut air dan ada bersama dengan lipoprotein

  • Struktur kimia

IgY mirip dengan Ig, ditemukan dalam serum yang terdiri dari dua rantai H dan dua rantai L dan memiliki berat molekul sekitar 180 kDa. Isi dari struktur β-sheet IgY lebih rendah dibandingkan dengan IgG mamalia. Kurangnya ikatan disulfida dalam rantai L IgY, fleksibilitas yang rendah di daerah engsel, dan sifat struktural lainnya (ukuran molekul, ikatan intramolekul, konformasi domain) semua dapat mempengaruhi rendahnya stabilitas dari molekul IgY dibandingkan dengan IgG.

  • Stabilitas

Stabilitas IgY dibandingkan dengan IgG pada mamalia sangat berpengaruh terhadap PH dan suhu lingkungan. Pada suhu lebih dari 70oC, IgY lebih sensitif panas dibandingkan IgG dan suhu maksimum denaturasi untuk IgY adalah 73.9oC, sedangkan untuk IgG adalah 77oC. Pada pH 2 dan 3 aktivitas IgY lebih sensitif terhadap kondisi asam dari pada IgG. Selain itu juga aktivitas IgY menurun pada pH di bawah 3,5 dan hampir hilang pada PH 3.0. Sebaliknya, kondisi ekstrim seperti kondisi alkali hingga pH 11 tidak mempengaruhi aktivitas.

  • Aktivitas antimikroba
    • Cara Kerja

IgY memiliki sebagian besar dokumentasi untuk mencapai aktivitas antivirus dan antibakteri dengan mengeluarkan patogen dari infeksi sel inang. Virus mengekspresikan permukaan sel spesifik pada membran sel inang untuk memulai dan membantu internalisasi pada infektif material, sehingga cara untuk mencegahnya adalah kemampuan Ig untuk mengikat khusus ke reseptor virus dan infeksi blok, proses tersebut dinamakan netralisasi virus.

  • Spesifisitas

IgY telah terbukti spesifik terhadap infeksi patogen yang berasal dari bakteri atau virus. Efek antibakteri melibatkan penggunaan IgY yang spesifik pada in vivo maupun in vitro untuk spesies Salmonella, E.coli, Streptococcus mutans, Edwardsiella tarda, S. aureus, dan Pseudomonas aeruginosa. Sedangkan efek antiviral yang menggunakan IgY spesifik pada in vivo maupun in vitro untuk rotavirus, coronavirus, dan penyakit bursal virus.

  • Aplikasi pada produk pangan

Aplikasi IgY ditemukan sebagai agen microstatic dalam mencegah pertumbuhan bakteri patogen menggunakan Ig poliklonal spesifik yang secara efektif mengurangi atau menetralkan proliferasi bakteri dalam produk makanan terutama daging, sehingga mengurangi resiko keamanan pangan terkait dengan produk tersebut. Disarankan IgY dapat digunakan sebagai bahan untuk makanan atau bahkan obat kumur untuk mencegah kolonisasi terserangnya mikroorganisme. Selain itu juga IgY dapat digunakan sebagai makanan adjuvant untuk mengontrol pertumbuhan bakteri dan mencegah mikroorganisme menyerang epitel usus.

D. Antimikroba Alami Lainnya Pada Hewan

ü  Avidin

Avidin adalah 66-kDa, glikoprotein bermuatan positif yang terisolasi dari berbagai putih telur unggas dan telur dari invertebrata. Avidin menerima banyak perhatian sebagai efek antinutritif yang mempunyai kemampuan untuk mengikat hingga empat molekul biotin dan membentuk kompleks yang stabil. Interaksi antara avidin dan biotin di alam sangat kuat dikenal dengan ikatan protein ligan. Avidin merupakan antibakteri yaitu, streptavidin yang diproduksi oleh spesies Streptomyces.

  • Bagian Molekul
    • Biosintesis

Avidin adalah protein minor dalam albumen burung sekitar 0,05% dari putih telur. Produksi avidin terjadi dalam sel goblet epithelium dari saluran telur secara eksklusif pada ayam petelur, menunjukkan bahwa produksi diatur oleh fungsi indung telur dan khususnya hormon progesteron dan beberapa steroid.

  • Isolasi dan Pemurnian

Metode isolasi pertama yang digunakan adalah solubilization yang selektif untuk avidin dengan cairan garam dari presifitasi alkohol protein telur. Kemungkinan protein telur teradsorpsi pada bentonit dan eluen dengan larutan fosfat dipotassium diikuti oleh purifikasi dengan fraksinasi amonium sulfat. Metode Adsorpsi diperbaiki dengan menggunakan pertukaran ion selulosa membiarkan adsorpsi protein dasar dalam karboksimetilselulosa pada PH tinggi dan elusi selanjutnya dengan ammonium karbonat.

  • Struktur kimia

Avidin adalah glikoprotein dasar yang terdiri dari empat subunit identik, masing-masing dengan perkiraan berat molekul 16 kDa (sekitar 66 kDa untuk molekul), dan memiliki pl sekitar 10. Struktur avidin menampakkan adanya beberapa permukaan yang mengekspos lisin dan residu arginin, yang dapat berkontribusi pada sifat dasar molekul.

  • Stabilitas

Avidin resisten terhadap perlakuan dengan menggunakan yodium pada PH netral, asetilasi pada kelompok amino, dan esterifikasi kelompok karboksil, tetapi inaktivasi molekul didapat dari oksidasi dengan H2O2 atau perlakuan dengan formaldehid dari alanin atau hidroksilamin pada suhu 50oC. Avidin relatif stabil pada berbagai PH dan suhu dalam kemampuannya mengikat biotin tetapi juga avidin akan kehilangan stabilitas pada kekuatan ion rendah, dengan 0,1 M HCL, 0,1 M sodium dodesil sulfat, dan 6 M HCL guanidin menyebabkan disosiasi subunit avidin dan kehilangan kemampuan mengikat biotin.

  • Aktivitas antimikroba
    • Cara Kerja

Diusulkan bahwa produksi avidin dan sekresi oleh makrofag diinduksi selama inflamasi dan kerusakan sel, dengan demikian sel inang dapat mempertahankan dari infeksi bakteri dan virus. Miller dan Tauig (1964) menunjukkan bahwa peningkatan jumlah avidin dalam jaringan ayam setelah pemberian intraperitoneal dan intravena E.coli mendukung pandangan bahwa avidin menyerang langsung kearah infeksi mikroba.

  • Spesifisitas

Avidin spesifik untuk berbagai bakteri Gram-negatif dan Gram-positif. Bakteri Gram-negatif yang dapat berikatan dengan avidin adalah E.coli, Klebsiella pneumonia, Serratia marcescens, dan P.aeruginosa, sedangkan bakteri Gram-positif yang dapat berikatan dengan avidin adalah S. aureus dan S.epidermis.

  • Aplikasi pada produk pangan

Aktivitas antimikroba avidin tidak ada aplikasi glikoprotein saat ini dalam makanan sebagai suatu antimikroba. Tetapi avidin digunakan dalam sistem avidin-biotin sebagai alat diagnosa dalam immunoassays.

ü  Lactolipids

Pada neonatus, aktivitas antimikroba diberikan oleh lemak susu yang merupakan hasil dari pelepasan asam lemak dan monogliserida dari trigliserida susu yang ada dalam globula lemak, merupakan 98% dari lemak susu. Lipid lain yang berasal dari hewan yang mempunyai aktivitas antimikroba yaitu berasal dari epidermis kulit untuk menonaktifkan S. aureus, asam lemak bebas di permukaan mukosa ditujukan untuk menonaktifkan pneumococci, dan lipid usus babi untuk menonaktifkan Clostridium perfringens (welchii). Lipid dapat berfungsi untuk menghambat pembentukan, dan perkembangbiakan mikroorganisme patogen di sel inang.

  • Bagian Molekul
    • Biosintesis

Biosintesis asam lemak terjadi setelah makan saat tubuh kaya energi. Kejadian setelah konsumsi melibatkan (ATP) oleh glikolisis, NADPH oleh jalur pentosa fosfat, dan penyimpanan glukosa sebagai glikogen. Setiap kelebihan glukosa dikonversi menjadi asam lemak dan disimpan sebagai triacylglycerols. Mayoritas biosintesis asam lemak terjadi di sitosol hati.

  • Isolasi dan Pemurnian

Asam lemak jarang ditemukan dalam bentuk bebas, dan dalam sistem biologi seperti susu umumnya dikombinasikan dalam molekul yang lebih kompleks melalui ikatan ester atau amida. Analisis asam lemak biasanya dilakukan dengan kromatografi gas-cair (GLC) atau kromatografi cair (HPLC).

  • Struktur kimia

Asam lemak yang umum adalah senyawa rantai lurus dan biasanya memiliki jumlah atom karbon genap. Asam lemak yang paling sederhana tidak memiliki asam lemak tak jenuh dan tidak dapat dimodifikasi oleh hidrogenasi atau halogenasi, ini disebut sebagai asam lemak jenuh.

  • Stabilitas

Kehadiran protein terutama albumin, dapat mengurangi aktivitas antimikroba dari asam lemak melalui ikatan spesifik dan nonspesifik. Aktivitas antimikroba asam lemak tak jenuh dapat berkurang dengan adanya surface active lain seperti kolesterol. Aktivitas antimikroba tergantung pada PH karena asam lemak rantai pendek merupakan hasil dari bentuk undissosiasi.

  • Aktivitas antimikroba
    • Cara Kerja

Lemak susu sebagian besar antivirus, dan telah ditunjukkan bahwa rantai pendek dan panjang asam lemak jenuh memiliki aktivitas antivirus minimal, sedangkan rantai medium asam lemak jenuh dan rantai panjang asam lemak tak jenuh aktivitas antivirus sangat tinggi. Aktivitas antimikroba pada lipid melalui destabilisasi membran menunjukkan dapat menghambat jamur dan bakteri. Mekanisme lipid yaitu dapat mengganggu/merusak dinding sel bakteri atau membrane, menghalangi interaksi sel ligan, dan penghambatan replikasi intraseluler.

  • Spesifisitas

Lemak susu dapat menonaktifkan bakteri Gram-positif termasuk S.epidermis, S.aureus, C.botulinum, B.subtilis, B.cereus, spesies Streptococcus, spesies Micrococcus, spesies Pneumococcus, spesies Corynebacterium, dan L.monocytogenes. Sedangkan bakteri Gram-negatif termasuk P.aeruginosa, E.coli, S.enteriditis, C.trachomatis dan N.gonorrhoeae. Selain itu, lemak susu juga menunjukkan aktivitas antimikroba terhadap fungi dan yeast.

  • Aplikasi pada produk pangan

Aktivitas antimikroba lipid telah digunakan dalam pengawetan makanan selama beberapa dekade. Monoacylglycerols dapat meningkatkan umur simpan berbagai makanan seperti kecap, miso, sosis, saus worcestershire, kue bolu, dan mie. Selain makanan ini, ester asam laurat monoacylglycerol juga menunjukkan potensi antimikroba pada salad seafood, keju camembert, dan berbagai makanan daging.

ü  Defensins

Defensin adalah kelompok antimikrobial peptida dalam karakteristik β-sheet dan enam kerangka kerja sistein disulfide. Defensin tersebar luas di alam dan di dalam sel epitel mamalia dan leukosit, dalam konsentrasi yang tinggi dan memiliki spektrum yang luas dari aktivitas antimikroba.

  • Bagian Molekul
    • Biosintesis

Defensin peptida ditemukan di semua mamalia seperti ayam dan kalkun, berlimpah dalam sel dan jaringan aktif dalam pertahanan sel inang melawan mikroorganisme. Paling tinggi (>10mg/ml) konsentrasi defensin dalam granula atau organel penyimpanan pada leukosit. Sel lain yang mengandung defensin dengan konsentrasi rendah (1-10µg/ml) adalah barrier dan sel epitel.

  • Struktur kimia

Ada dua subfamilies defensin yang utama yaitu α- and β-defensin, yang berbeda adalah panjang segmen peptida antara enam residu sistein dan pasangan sistein yang dihubungkan dengan ikatan disulfida. Urutan asam amino dan komposisi defensin sangat bervariasi, namun kerangka sistein kekal di setiap subfamily defensin. Sebagian besar α- dan β- defensin memiliki kelompok asam amino bermuatan positif. Mayoritas α- dan β- defensin dari leukosit dan sel Paneth mengandung arginin sebagai asam amino kationik, sedangkan β- defensin dikeluarkan dari sel epitel yang mengandung jumlah yang sama dengan arginin dan lisin.

  • Aktivitas antimikroba
    • Cara Kerja dan spesifitas

Defensin sebagai antibakteri dan antimycotic, terutama pada kondisi ion rendah, konsentrasi kation divalen rendah, protein plasma, dan bahan campuran lainnya. Dalam kondisi optimal defensin aktif pada konsentrasi yang sangat rendah (1 sampai 10 µg/ml). Defensin juga telah terbukti efektif terhadap beberapa virus. Mekanisme untuk aktivitas antimikroba adalah disebabkan oleh permeabilisasi membran sel dan kemudian sel menjadi lisis, penghambatan RNA, DNA, sintesis protein, dan penurunan viabilitas selular.

  • Aplikasi pada produk pangan

Meskipun defensin merupakan antimikrobial peptida yang dapat diisolasi dan dimurnikan dari hewan, tetapi tidak ada aplikasinya sebagai aditif dalam makanan, selain aktivitas antimikroba sebagai bahan alami dalam produk makanan mentah.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Masukkan alamat surel Anda untuk berlangganan blog ini dan menerima pemberitahuan tulisan-tulisan baru melalui email.

Bergabunglah dengan 139 pengikut lainnya

Tulisan Terakhir

Mohon maaf jika artikel yang di sajikan berasal dari banyak sumber, sumber yang masih utuh saya tampilkan sumber aslinya, tapi seringkali saya lupa, mohon di maafkan. saya coba perbaiki terus kualitas dan kuantitas blog ini.
%d blogger menyukai ini: