“Allahumma tawwi umurana fi ta’atika wa ta’ati rasulika waj’alna min ibadikas salihina”

PENGUJIAN PANGAN

MENGENAL LEBIH DEKAT: DESINFEKTAN KLORIN

MENGENAL LEBIH DEKAT: DESINFEKTAN KLORIN

Klorin banyak digunakan dalam pengolahan air bersih dan air limbah sebagai Oksidator dan desinfektan. Sebagai oksidator, klorin digunakan untuk menghilangkan bau dan rasa pada pengolahan air bersih. Untuk mengoksidasi Fe(II) dan Mn(II) yang banyak terkandung dalam air tanah menjadi Fe(III) dan Mn(III).

Yang dimaksud dengan klorin tidak hanya Cl2 saja akan tetapi termasuk pula asam hipoklorit (HOCl) dan ion hipoklorit (OCl-), juga beberapa jenis kloramin seperti monokloramin (NH2Cl) dan dikloramin (NHCl2) termasuk di dalamnya. Klorin dapat diperoleh dari gas Cl2 atau dari garam-garam NaOCl dan Ca(OCl)2. Kloramin terbentuk karena adanya reaksi antara amoniak (NH3) baik anorganik maupun organik aminoak di dalam air dengan klorin.

Bentuk desinfektan yang ditambahkan akan mempengaruhi kualitas yang didesinfeksi. Penambahan klorin dalam bentuk gas akan menyebabkan turunnya pH air, karena terjadi pembentukan asam kuat. Akan tetapi penambahan klorin dalam bentuk natrium hipoklorit akan menaikkan alkalinitas air tersebut sehingga pH akan lebih besar. Sedangkan kalsium hipoklorit akan menaikkan pH dan kesadahan total air yang didesinfeksi.

Kaporit adalah senyawa kimia ( CaOCl2 ), yg pada kadar tinggi bersifat korosif. Pada prosentase rendah bisa digunakan sebagai penjernih air, pemutih pakaian, membunuh jentik, disinfektan.

Dampak Negatif Klorin Bagi Kesehatan Tubuh

Klorin, khlorin atau chlorine merupakan bahan utama yang digunakan dalam proses khlorinasi. Sudah umum pula bahwa khlorinasi adalah proses utama dalam proses penghilangan kuman penyakit air ledeng, air bersih atau air minum yang digunakan oleh masyarakat. Proses khlorinasi sangat efektif untuk menghilangkan kuman penyakit terutama dalam penggunaan air ledeng. Tetapi dibalik kefektifannya klorin juga dapat berbahaya bagi kesehatan. Orang yang meminum air yang mengandung klorin memiliki kemungkinan lebih besar untuk terkena kanker kandung kemih, dubur ataupun usus besar. Sedangkan bagi wanita hamil dapat menyebabkan melahirkan bayi cacat dengan kelainan otak atau urat saraf tulang belakang, berat bayi lahir rendah, kelahiran prematur atau bahkan dapat mengalami keguguran kandungan. Selain itu pada hasil studi efek klorin pada binatang ditemukan pula kemungkinan kerusakan ginjal dan hati.

Fungsi Klorin Sebagai Disinfektan

Air dapat merupakan medium pembawa mikroorganisme patogenik yang dapat berbahaya bagi kesehatan. Patogen yang sering ditemukan di dalam air terutama adalah bakteri-bakteri penyebab infeksi saluran pencernaan seperti Vibrio cholera penyebab penyakit kolera, shigella dysentereae penyebab disentri basiler, salmonella typhosa penyebab tifus dan S. Paratyphy penyebab paratifus, virus polio dan hepatitis. Untuk mencegah penyebaran penyakit melalui air, maka bakteri patogen di dalam air harus dihilangkan dengan proses disinfeksi.

Kegunaan disinfeksi pada air adalah untuk mereduksi konsentrasi bakteri secara umum dan menghilangkan bakteri patogen. Penghilangan bakteri patogen tersebut terutama harus benar-benar dilakukan untuk air yang akan diminum untuk mencegah timbulnya penyakit. Program disinfeksi ini telah digunakan secara luas sejak awal tahun 1900 untuk menangani air yang akan digunakan secara luas.

Mikroba dalam hal ini bakteri patogen pada umumnya dapat bertahan selama beberapa hari tergantung juga dari kondisi lingkungannya. Beberapa faktor yang mempengaruhi ketahanan tersebut antara lain pH, suhu, gizi yang tersedia, kompetisinya dengan mikroba lain, kemampuan membentuk spora dan ketahanannya terhadap senyawa penghambat. Sedangkan kemampuannya untuk menyebabkan penyakit antara lain ditentukan oleh konsentrasi, virulensi dan resistensi.

Lebih dari 50% bakteri patogen didalam air yang akan mati dalam waktu 2 hari dan 90% akan mati pada akhir 1 minggu. Oleh karena itu, waduk-waduk penampang sebenarnya cukup efektif untuk mengendalikan bakteri. Walaupun demikian, beberapa jenis patogen mungkin tetap hidup selama 2 tahun lebih, karena itu dibutuhkan disinfeksi. Klorin teerbukti merupakan disinfektan yang ideal. Bila dimasukkan kedalam air akan mempunyai pengruh yang segera akn membinasakan kebanyakan makhluk mikroskopis.

Penggunaan disinfektan dapat mengatasi mikroba patogen yang spesifik. Metode desinfeksi telah dikenal secara luas. Disinfeksi dapat dilakukan antara lain dengan berbagai metode dan bahan kimia seperti dengan klorin, yodium, ozon, senyawa amonium kuarterner dan lampu ultraviolet. Berdasarkan perhitungan ekonomi, efisiensi dan kemudahan penggunaanya maka penggunaan klorin merupakan metode yang paling umum digunakan.

Klorinasi

Klorinasi merupakan disinfeksi yang paling umum digunakan. Klorin yang digunakan dapat berupa bubuk, cairan atau tablet. Bubuk klorin biasanya berisi kalsium hipoklorit, sedangkan cairan klorin berisi natrium hipoklorit. Disinfeksi yang menggunakan gas klorin disebut sebagai klorinasi. Sasaran klorinasi terhadap air minum adalah penghancuran bakteri melalui germisidal dari klorin terhadap bekteri.

Bermacam-macam zat kimia seprti ozon (O3), klor (Cl2), klordioksida (ClO2), dan proses fisik seperti penyinaran sinar ultraviolet, pemanasan dan lain-lain, digunakan sebagai disinfeksi air. Dari bermacam-macam zat kimia diatas , klor adalah zat kimia yang sering dipakai karena harganya murah dan masih mempunyai daya disinfeksi sampai beberapa jam setelah pembubuhannya yaitu yang disebut sebagai residu klorin (Alaerts, 1984).

Klor berasal dari gas klor Cl2, NaOCl, Ca(OCl2) (kaporit), atau larutan HOCl (asam hipoklorit).Breakpoint chlorination (klorinasi titik retak) adalah jumlah klor yang dibutuhkan sehingga:

 semua zat yang dapat dioksidasi teroksidasi

 amoniak hilang sebagai gas N2

 masih ada residu klor aktif terlarut yang konsentrasinya dianggap perlu untuk pembasmi kuman-kuman.

Klorin sering digunakan sebagai disinfektan untuk menghilangkan mikroorganisme yang tidak dibutuhkan, terutama bagi air yang diperuntukkan bagi kepentingan domestik. Beberapa alasan yang menyebabkan klorin sering digunakan sebagai disinfektan adalah sebagai berikut:

1. Dapat dikemas dalam bentuk gas, larutan, dan bubuk.

2. Relatif murah.

3. Memiliki daya larut yang tinggi serta dapat larut pada kadar yang tinggi (7000mg/l).

4. Residu klorin dalam bentuk larutan tidak berbahaya bagi manusia, jika terdapat dalam kadar yang tidak berlebihan.

5. Bersifat sangat toksik bagi mikroorganisme, dengan cara menghambat aktivitas metabolisme mikroorganisme tersebut.

Proses penambahan klor dikenal dengan istilah klorinasi. Klorin yang digunakan sebagai disinfektan adalah gas klor yang berupa molekul klor (Cl2) atau kalsium hipoklorit [Ca(OCl2)]. Namun, penambahan klor secara kurang tepat akan menimbulkan bau dan rasa pahit.

Pada proses klorinasi, sebelum berperan sebagai disinfektan, klorin yang ditambahkan akan berperan sebagai oksidator, seperti persamaan reaksi :

H2S + 4 Cl2 + 4 H2O → H2SO4 + 8 HCl

Jika kebutuhan klorin untuk mengoksidasi beberapa senyawa kimia perairan telah terpenuhi, klorin yang ditambahkan akan berperan sebagai disinfektan. Gas klor bereaksi dengan air menurut persamaan:

Jika diperairan tidak terdapat amoniak:

Cl2 + H2O → HCl + HOCl

    V    V

H+ + Cl- H+ +ClO-

(residu bebas)

Jika di perairan terdapat amonia:

NH4+ + HClO → NH2Cl + H2O + H+

Monokloramin

NH2Cl + HClO→ NHCl2 + H2O

Dikloramin

NHCl2 + HClO→ NCl3 + H2O

Nitrogen triklorida

Reaksi kesetimbangan sangat dipengaruhi oleh pH. Pada pH 2, klor berada dalam bentuk klorin (Cl2); pada pH 2-7 , klor kebanyakan terdapat dalam bentuk HOCl; sedangkan pada pH 7,4 klor tidak hanya terdapat dalam bentuk HOCl tetapi juga dalam bentuk ion OCl-. Pada kadar klor kurang dari 1.000 mg/l, semua klor berada dalam bentuk ion klorida (Cl-) dan hipoklorit (HOCl) ,atau terdisosiasi menjadi H+ dan OCl-.

Beberapa kota besar menyadari bahwa lebih ekonomis dan aman untuk mempergunakan kalsium hipoklorit sebagai disinfektan. Bahan kimia ini bereaksi dengan air untuk membebaskan hipoklorit. Jumlah klorin yang dibutuhkan tergantung pada jumlah bahan organik dan anorganik yang berkurang di dalam air. Secara umum kebanyakan air akan mengalami disinfeksi cukup baik bila residu klorin bebas sebanyak 0,2mg/l diperoleh setelah klorinasi selama 10 menit. Residu yang lebih besar dapat menimbulkan bau yang tidak sedap, sedangkan yang lebih kecil tidak dapat menghilangkan bakteri pada air. Klorin akan sangat efektif bila pH air rendah, bila persediaan air mengandung fenol, penambahan klorin ke air akan mengakibatkan rasa yang kurang enak akibat pembentukan senyawa-senyawa klorofenol. Rasa ini dapat dihilangkan dengan menambahkan amoniak ke air sebelum klorinasi. Campuran klorin dan amoniak membentuk kloroamin, yang merupakan disinfektan yang relatif baik, walaupun tidak seselektif hipoklorit. Kloramin tidak bereaksi dengan cepat, tetapi bekerja terus untuk waktu yang lama. Karene itu, mutu disinfeksinya dapat berlanjut jauh kedalam jaringan distribusi.

Kebutuhan klorin atau chlorine demand untuk proses disinfeksi tergantung pada beberapa faktor. Klorin adalah adalah oksidator dan akan bereaksi dengan beberapa komponen termasuk komponen organik pada air. Faktor yang mempengaruhi efisiensi disinfeksi atau kebutuhan akan klorin dipengaruhi oleh jumlah dan jenis klorin yang digunakan, waktu kontak, suhu dan jenis serta konsentrasi mikroba.

Kebutuhan klorin untuk air yang relatif jernih dan pada air yang mengandung suspensi padatan yang tidak terlalu tinggi biasanya relatif kecil. Klorin akan bereaksi dengan berbagai jenis komponen yang ada pada air dan komponen-komponen tersebut akan berkompetisi dalam penggunaan klorin sebagai bahan untuk disinfeksi. Sehingga pada air yang relatif kotor, sebagian besar akan bereaksi dengan komponen yang ada dan hanya sebagian kecil saja yang bertindak sebagai disinfektan.

Residu klorin juga merupakan hal yang harus diperhatikan dalam penggunaan klorin karena kemampuannya sebagai agen penginaktivasi enzim mikroba setelah zat tersebut masuk kedalam sel mikroba. Klorin dapat bertindak sebagai disinfektan baik dalam bentuk klorin bebas maupun klorin terikat pada suatu larutan dapat dijumpai dalam bentuk asam hipoklorit atau ion hipoklorit. Klorin dalam bentuk klorin bebas dan asam hipoklorit merupakan bentuk persenyawaan yang baik untuk tujuan disinfeksi.

Penentuan Kadar Klorin

Untuk setiap unsur klor aktif seperti klor tersedia bebas dan klor tersedia terikat memiliki analisa-analisa khusus. Namun, untuk analisa di laboratorium biasanya hanya klor aktif (residu) yang ditentukan melalui suatu analisa. Klor aktif dapat dianalisa melalui titrasi iodometri ataupun melalui metode kolorimetri dengan menggunakan DPD (Dietil-p-fenilendiamin). Analisa iodometris lebih sederhana dan murah tetapi tidak sepeka DPD.

Adapun prinsip kerja dari analisa dengan menggunakan DPD adalah; Bila N,N-dietil-p-fenilendiamin (DPD) sebagai indikator dibubuhkan pada suatu larutan yang mengandung sisa klor aktif, reaksi terjadi seketika dan warna larutan menjadi merah. Sebagai pereaksi digunakan iodida (KI) yang akan memisahkan klor tersedia bebas, monokloramin dan dikloramin, tergantung dari konsentrasi iodida yang dibubuhkan. Reaksi ini membebaskan iodin I2 yang mengoksidasi indikator DPD dan memberi warna yang lebih merah pada larutan bila konsentrasi pereaksi ditambah. Untuk mengetahui jumlah klor bebas dan klor terikat maka larutan dititrasi dengan larutan FAS (Ferro Amonium Sulfat) sampai warna merah hilang. pH larutan harus antara 6,2 sampai 6,5.

Pemeriksaan klorin dalam air dengan metode DPD dianalisa dengan menggunakan alat Komparator. Yaitu berdasarkan pembandingan warna yang dihasilkan oleh zat dalam kuantitas yang tidak diketahui dengan warna yang sama yang dihasilkan oleh kuantitas yang diketahui dari zat yang akan ditetapkan, dimana kadar klorin akan dibaca berdasarkan warna yang dibentuk oleh pereaksi.

Kolorimetri

Kolorimetri merupakan cara yang didasarkan pada pengukuran fraksi cahaya yang diserap analat. Prinsipnya: seberkas sinar dilewatkan pada analat, setelah melewati analat intensitas cahaya berkurang sebanding dengan banyaknya molekul analat yang menyerap cahaya itu. Intensitas cahaya sebelum dan sesudah melewati bahan diukur dan dari situ dapat ditentukan jumlah bahan yang bersangkutan.

Kolorimetri berarti pengukuran warna, yang berarti bahwa dalam kolorimeter, sinar yang digunakan adalah sinar daerah tampak (visible spectrum), sebaliknya, spektrofotometri tidak terbatas pada pengunaan sinar dalam daerah tampak, tetapi dapat juga sinar UV dan sinar IM. Maka timbul istilah-istilah spektrofotometri UV, spektrofotometri tampak, dan spektrofotometri IM.

Variasi warna suatu sistem berubah dengan berubahnya konsentrasi suatu komponen, membentuk dasar apa yang lazim disebut analisis kolorimetrik oleh ahli kimia. Warna tersebuat biasanya disebabkan oleh pembentukan suatu senyawa berwarna dengan ditambahkannya reagensia yang tepat, atau warna itu dapat melekat dalam penyusun yang diinginkan itu sendiri.

Kolorimetri dikaitkan dengan penetapan konsentrasi suatu zat dengan mengukur absorbsi relatif cahaya sehubungan dengan konsentrasi tertentu zat tersebut.

Dalam kolorimetri visual, cahaya putih alamiah ataupun buatan umumnya digunakan sebagai sumber cahaya, dan penetapan biasanya dilakukan dengan suatu instrumen sederhana yang disebut kolorimeter atau pembanding (comparator) warna. Bila mata digantikan oleh sel fotolistrik, instrumen itu disebut kolorimetri fotolistrik. Alat kedua ini biasanya digunakan dengan cahaya putih melalui filter-filter, yakni bahan terbuat dari lempengan berwana terbuat dari kaca, gelatin, dan sebagainya , yang meneruskan hanya daerah spektral terbatas.

 Komparator Lovibond

Komparator Lovibond adalah jenis colorimeter dibuat di Britania oleh The Tintometer Ltd. Hal ini ditemukan pada abad ke-19 oleh Joseph Williams Lovibond dan versi update masih tersedia.

Sampel yang akan diuji dicampur dalam tabung gelas dengan warna reagen.Tabung gelas dimasukkan ke dalam komparator dan dibandingkan dengan serangkaian kaca berwarna sampai pertandingan terdekat mungkin ditemukan. konsentrasi sampel ditunjukkan di sebelah disk yang dipilih. Hasilnya hanya merupakan perkiraan tetapi komparator ini sangat berguna untuk pekerjaan lapangan karena portabel, kasar dan mudah digunakan.

Komparator livibond 1000 juga menggunakan deret standar kaca permanen. Cakram yang mengandung sembilan standar warna kaca itu pas pada komparator, yang dilengkapi dengan 4 ruang untuk dipasangi tabung uji kecil atau sel persegi. Cakram itu dapat berputar dalam komparator, dimana larutan dalam sel dapat diamati. Dengan berputarnya cakram, nilai standar warna yang tampak dalam lubang itu akan kelihatan pada jendela khusus.


Sekilas Mengenal Air Minum Yang Sehat

Sekilas Mengenal Air Minum Yang Sehat
(pengujian air minum yang sehat)

Tubuh manusia sebagian besar(sekitar 70%) terdiri dari zat cair. Air didalam tubuh manusia memiliki peranan sangat penting, diantaranya adalah untuk proses metabolisme tubuh, mempertahankan suhu tubuh yang ideal, melancarkan peredaran darah keseluruh tubuh serta berguna untuk proses detoksifikasi atau pembuangan racun dalam tubuh melalui air kencing & keringat.
Jika tubuh manusia kekurangan cairan maka dampaknya adalah, merasa kehausan, suhu tubuh meningkat, kerja ginjal, empedu, saraf & kantong kemih akan terganggu, distribusi oksigen ke otak akan tidak lancar, tekanan darah tidak stabil,, WoW ngeri juga ya Gan…..
Saat ini banyak sekali / menjamurnya bisnis-bisnis isi ulang air minum, industri air minum dalam kemasan (AMDK) juga menjamur dimana-mana.
Berbagai merk yang dibalut dalam kemasan yang bagus serta iming-iming air minum yang mereka produksi berasal dari sumber mata air pegunungan yang jernih. Kesemuanya itu membuat kita banyak pilihan untuk membeli & mengkonsumsi air galon isi ulang & AMDK tersebut.
Gan, ada  baiknya kalau Agan menguji kualitas air kemasan atau air dari si penjual galon isi ulang tersebut. Pengujian ini dapat berupa pembelian alat yang disebut sebagai katalisator yang banyak dijumpai di toko-toko bangunan. Secara umum cara kerja alat ini adalah dengan memanaskan air menggunakan arus listrik sampai dengan suhu 180 derajat Celcius. Dari proses pemanasan ini mengakibatkan senyawa H2O yang tekandung dalam air akan terlepas & membentuk gumpalan. Naah,, gumpalan inilah Gan yang sebenarnya adalah zat yang tidak dapat terserap oleh tubuh yang dalam jangka panjang akan membahayakan tubuh manusia. Semakin banyak gumpalan yang terbentuk,semakin berbahaya air tersebut untuk dikonsumsi oleh tubuh.
Cara lain yang lebih akurat untuk menguji air berkualitas adalah dengan cara membawa sampel air ke laboratorium untuk diteliti.
Adapun garis besar hasil dari penelitian/pengujian air di laboratorium adalah berupa pengujian-pengujian berikut:

1. Turbidity (kekeruhan)

Tes ini digunakan untuk menyatakan derajat kejernihan di dalam air yang disebabkan oleh bahan-bahan yang melayang. Kekeruhan ini biasanya disebabkan / terdiri dari partikel organik maupun non organik yang pada umumnya tidak terlihat oleh mata telanjang. Pengukuran kekeruhan ini adalah merupakan tes kunci dari suatu pengujian kualitas air. Semakin sedikit partikel-partikel yang ada didalam air, maka air akan terlihat semakin jernih.

2. Conductivity (penghantar)

Conductivity adalah kemampuan menghantarkan panas, listrik serta suara. Semua logam kebanyakan adalah penghantar yang baik, karena terdiri dari elemen-elemen. Air minum yang baik adalah air yang susah dalam hal menghantarkan atau mengalirkan arus listrik, artinya air ini tidak memiliki atau sangat sedikit mengandung logam-logam penghantar arus listrik.

3. Total Iron / Zat Besi

Zat besi tidak dianggap berbahaya bagi kesehatan, karena pada kenyataannya justru zat besi sangat penting bagi kesehatan. Zat besi berfungsi sebagai pengangkut oksigen di dalam darah. Kandungan Zat besi tersebut harus dibatasi dalam kandungan air minum, karena kalau berlebih akan menyebabkan keracunan. Kandungan / kadar zat besi dalam air minum yang disarankan adalah tidak lebih dari 0,3 mg/liter air.

4. Total Free / Residual Chlorine 

Klorin adalah desinfektan yang sangat efektif & dapat dicampurkan/bercampur dengan air minum. Kandungan klorin dalam air bermanfaat untuk membunuh bakteri berbahaya yang hidup dalam air. Namun demikian kandungan klorin didalam air minum harus sesuai dengan batas yang dianjurkan. Air minum membutuhkan 2.0 mg/ltr Klorin untuk merusak semua kuman.

5. Total Hardness / Kekerasan

Kekerasan air adalah air yang memiliki kandungan mineral yang tinggi. Mineral yang  ada di dalam air terdiri dari Kalsim (Ca2+) & kation dari logam Magnesium (Mg2+), serta senyawa-senyawa lainnya yang larut dalam air seperti bikarbonat, sulfat & besi yang sangat tinggi. Kalsium masuk kedalam air bisa sebagai Kalsium Karbonat (CaCO3) dalam bentuk kapur/batu kapur, dapat juga masuk sebagai Kalsium Sulfate (CaSO4) berupa deposit-deposit mineral. Air seperti ini umumnya tidak berbahaya, tapi sangat tidak dianjurkan untuk dikonsumsi dalam jangka waktu yang lama.

6. Total Dissolved Oxygen (DO) / kelarutan Oksigen

Keberadaan oksigen dalam air biasanya diukur dalam jumlah oksigen terlarut, yaitu jumlah miligram gas oksigen yang terlarut dalam 1 liter air. Semakin besar nilai DO pada air, mengindikasikan air tersebut memiliki kualitas yang bagus. Sebaliknya jika nilai DO rendah, dapat diketahui bahwa air tersebut telah tercemar. Pengukuran DO juga bertujuan melihat sejauh mana badan air mampu menampung biota air seperti ikan dan mikroorganisme. Selain itu kemampuan air untuk membersihkan pencemaran juga ditentukan oleh banyaknya oksigen dalam air, tetapi jika nilai DO berlebih akan tidak baik juga untuk kesehatan karena akan memperberat kerja ginjal & pembuluh darah.


UJI EFEKTIVITAS PENENTUAN PERLAKUAN TERBAIK DITENTUKAN BERDASARKAN METODE INDEKS EFEKTIVITAS(DEGARMO ET AL ., 1984)

UJI EFEKTIVITAS PENENTUAN PERLAKUAN TERBAIK DITENTUKAN BERDASARKAN METODE INDEKS EFEKTIVITAS(DEGARMO ET AL ., 1984)

Metode ini dilakukan berdasarkan prosedur sebagai berikut: Variabeldiurutkan menurut prioritas dan kontribusi terhadap hasil. Memberikan bobot nilai pada masing-masing variabel (BV) sesuai kontribusinya dengan angka relatif 0-1. Bobot ini berbedatergantung dari kepentingan masing-masing variabel yang hasilnya diperoleh sebagai akibatperlakuan. Bobot normal (BN) ditentukan dari masing-masing variabel dengan membagi bobotvariabel (BV) dengan jumlah semua bobot variabel.Mengelompokkan variabel-variabel yang dianalisa dua kelompok yaitu: a) Kelompok A,terdiri dari variabel-variabel yang semakin besar reratanya semakin baik (dikehendaki padaproduk yang diperlakukan), b) Kelompok B adalah kelompok yang makin besar reratanyasemakin jelek (tidak dikehendaki).Ditentukan nilai efektivitas (Ne) masing-masing variabel, dengan rumus:Nilai perlakuan – Nilai terjelek Nilai terbaik – Nilai terjelek Untuk variabel dengan rerata semakin besar semakin baik, maka nilai terendah sebagainilai terjelek dan nilai tertinggi sebagai nilai terbaik. Sebaliknya untuk variabel dengan nilaisemakin kecil semakin baik, maka nilai tertinggi sebagai nilai terjelek dan nilai terendah sebagaiyang terbaik. Menghitung nilai hasil (Nh) masing-masing variabel yang diperoleh dari perkalianbobot normal (BN) dengan nilai efektifitas (Ne). Menjumlahkan nilai hasil dari semua variabel,dan kombinasi terbaik dipilih dari kombinasi perlakuan yang memiliki nilai hasil (Nh) tertinggi.

N EFEKTIVITAS     =     nilai perlakuan – nilai terjelek

                Nilai terbaik – nilai terjelek

Nilai hasil = NE x bobot


Pengenalan Alat Spektrofotometer, Matching Kuvet dan Pembuatan Spektrum Serapan

Pengenalan Alat Spektrofotometer, Matching Kuvet dan Pembuatan Spektrum Serapan

Pengenalan Alat Spektrofotometer, Matching Kuvet dan Pembuatan Spektrum Serapan
Tujuan: Untuk mengetahui komponen utama Alat Spektrofotometer, cara pengoperaian, cara melakukan Cuvet Matching dan membuat Spektrum Serapan
Dasar Teori:
Komponen Utama alat spektrofotometer, pada prinsipnya dapat digambarkan sebagai diagram blok berikut:

Diagram Blok Komponen-komponen Utama Alat Spektrofotometer (click untuk maximize)


Alat akan mengukur nilai intensitas cahaya: P dan Po melalui sistem processor, akan diubah menjadi besaran transmitansi (T), dan absorbsi (A), yang memiliki rumusan sebagai berikut:


Sumber sinar sebagai penyedia radiasi sinar (polikromatis) (biasanya lampu wolfram).
Sistem monokromator: mengubah gelombang cahaya polikromatik menjadi monokromatik.
kuvet: sebagai tempat menaruh larutan sampel dan blanko ke dalam berkas cahaya spektrofotometer.
detektor: mengubah isyarat radiasi menjadi isyarat listrik.
read out: mengubah sinyal-sinyal listrik dari detektor menjadi numerik yang dapat dibaca dalam bentuk &T atau absorbansi.
A = – log T
Sebelum dioperasikan, alat harus dikalibrasi dulu, yaitu dengan menentukan 0% T dan 100% T. Kalibrasi ini berguna agar hasil analisis dari alat tersebut lebih akurat.
Pada pekerjaan analisis yang sesungguhnya, semestinya selalu diawali dengan matching cuvet yang bertujuan untuk mengetahui apakah cuvet yang digunakan mempunyai diameter (nilai b) yang sama. Hal ini perlu dilakukan, karena menurut hukum Lambert-Beer nilai A berbanding lurus dengan nilai b dan C (konsentrasi larutan). Setelah dilakukan matching cuvet, pekerjaan dilanjutkan dengan mengetahui spektrum serapan larutan yang dianalisis. Dari spektrum-spektrum itu, akan dapat diketahui panjang gelombang dimana zat akan melakukan penyerapan maksimum (panjang gelombang = maksimum).
ohya, *)kuvet ada dua yaitu : kuvet permanent (terbuat dari gelas atau leburan silica) dan kuvet disposable (dari plastic atau Teflon).
Kuvet dari leburan silica dapat digunakan = 190-1100 nm
Kuvet dari bahan gelas = 380-1100 nm
Cara Kerja
A. Alat dan Bahan
-seperangkat alat Spektofotometer
-Gelas ukur dan peralatan gelas lainnya.
B. Bahan
– larutan CoCl2 (warna larutan merah jambu)
C. Cara Kerja (saya singkat aja ya, he3x)
- kalibrasi alat spektrofotometer (tergantung model alat)
Kalibrasi yang dimaksud ini adalah men-seting blank alat spektrofotometer, sebelum digunakan untuk analisis. Secara umum sbb:
1. Nyalakan alat spektrofotometer
2. Isi kuvet dengan larutan blanko (aquades)
3. Diseting/diatur panjang gelombang untuk kalibrasi.
->keterangan: 0%T itu diukur saat kuvet dalam keadaan kosong. 100%T itu diukur saat kuvet dalam keadaan terisi larutan.
4. Kuvet berisi larutan blanko dimasukkan ke spektrofotometer
5. lalu tekan tombol 0 ABS 100%T, tunggu sampai keluar kondisi setting blank (dalam bentuk teks)
matching cuvet
Sediakan paling tidak 3-5 cuvet.
Disiapkan larutan CoCl2 dan aquades (blanko).
Atur posisi 0%T dan 100%T.
Ukur %T dari larutan CoCl2 dengan menggunakan cuvet-cuvet tadi. Tandai cuvet yang menghasilkan %T yang sangat mendekati sama (lebih baik  “sama” jika memungkinkan). Kuvet yang matching ini akan mempunyai ketebalan sama. Ukur juga ketebalan (diameter) kuvet. Biasanya 1 cm.
Ambil 2 cuvet yang “matching” untuk percobaan, misalnya kuvet I dan kuvet II. Dua kuvet ini akan digunakan selanjutnya.
D. Membuat Spektrum Serapan
– disiapkan 2 cuvet tadi. kuvet I diisi blanko, sedangkan kuvet II untuk diisi larutan CoCl2 untuk dibuat spektrum serapannya.
– diukur %T larutan CoCl2 mulai panjang gelombang 490-520nm (karena secara teori daerah serapan larutan CoCl2 berada di panjang gelombang disekitar 510nm). Pengukurannya dimulai dari panjang gelombang 490-500 dengan interval 5nm, lalu 500-510 dengan interval 1 nm (dibuat kecil karena mendekati teori), lalu 510 – 520 dengan interval 1nm juga.
kemudian dibuat tabel

Contoh tabel pengamatan absorbansi sebagai fungsi gelombang

Contoh hasil Kurva Absorbansi CoCl2



dari Kurva tersebut, dapat diperoleh lamda (panjang gelombang) maksimal dimana larutan CoCl2 mempunyai serapan maksimal (A maks).
Spektrofotometer digunakan di atas cukup dengan S. berkas tunggal. Adapun S. berkas ganda lebih mahal harganya.

Spektrofotometer berkas tunggal Spektrofotometer berkas ganda
Penentuan spektrum serapan secara manual, sehingga boros waktu >>Secara otomatis, sehingga hemat waktu.
Harga lebih murah Lebih mahal
Baik untuk analisa kualitatif Baik untuk analisa kuantitatif, karena lebih akurat.
Alat Spektrofotometer (lebih modern: tinggal tekan tombol aja he3x)
Cuvet berbentuk tabung


beberapa pengenceran larutan untuk kalibrasi dalam gelas ukur ukuran 50 mL

Contoh Gambar Cuvette

Cuvet berbentuk persegi panjang lebar

diameter ± 1 cm

±

**)Spectronic-20 (model lama: masih manual) dan kuvet dari gelas yang berbentuk tabung

Catatan kaki:
*)Macam kuvet ini saya peroleh dari http://himdikafkipuntan.blogspot.com/2008/04/spektrofotometri-serapan-atom.html
**)Gambar dari http://file.upi.edu/Direktori/D%20-%20FPMIPA/JUR.%20PEND.%20KIMIA/195807121983032%20-%20ANNA%20PERMANASARI/presentasi%20kuliah/Pengantar%20Kuliah%20spektro.pdf

http://logku.blogspot.com/


Accelerated Shelf-life Testing (ASLT)

Pendugaan Umur Simpan Produk Pangan dengan Metode Accelerated Shelf-life Testing (ASLT)

Keterangan umur simpan (masa kadaluarsa) produk pangan merupakan salah satu informasi yang wajib dicantumkan oleh produsen pada label kemasan produk pangan. Pencantuman informasi umur simpan menjadi sangat penting karena terkait dengan keamanan produk pangan dan untuk memberikan jaminan mutu pada saat produk sampai ke tangan konsumen. Kewajiban pencantuman masa kadaluarsa pada label pangan diatur dalam Undang-undang Pangan no. 7/1996 serta Peraturan Pemerintah No. 69/1999 tentang Label dan Iklan Pangan, dimana setiap industri pangan wajib mencantumkan tanggal kadaluarsa (expired date) pada setiap kemasan produk pangan.

Informasi umur simpan produk sangat penting bagi banyak pihak, baik produsen, konsumen, penjual, dan distributor. Konsumen tidak hanya dapat mengetahui tingkat keamanan dan kelayakan produk untuk dikonsumsi, tetapi juga dapat memberikan petunjuk terjadinya perubahan citarasa, penampakan dan kandungan gizi produk tersebut. Bagi produsen, informasi umur simpan merupakan bagian dari konsep pemasaran produk yang penting secara ekonomi dalam hal pendistribusian produk serta berkaitan dengan usaha pengembangan jenis bahan pengemas yang digunakan. Bagi penjual dan distributor informasi umur simpan sangat penting dalam hal penanganan stok barang dagangannya.

Penentuan umur simpan produk pangan dapat dilakukan dengan menyimpan produk pada kondisi penyimpanan yang sebenarnya. Cara ini menghasilkan hasil yang paling tepat, namun memerlukan waktu yang lama dan biaya yang besar. Kendala yang sering dihadapi oleh industri dalam penentuan umur simpan suatu produk adalah masalah waktu, karena bagi produsen hal ini akan mempengaruhi jadwal launching suatu produk pangan. Oleh karena itu diperlukan metode pendugaan umur simpan cepat, mudah, murah dan mendekati umur simpan yang sebenarnya.

Metode pendugaan umur simpan dapat dilakukan dengan metode Accelerated Shelf-life Testing (ASLT), yaitu dengan cara menyimpan produk pangan pada lingkungan yang menyebabkannya cepat rusak, baik pada kondisi suhu atau kelembaban ruang penyimpanan yang lebih tinggi. Data perubahan mutu selama penyimpanan diubah dalam bentuk model matematika, kemudian umur simpan ditentukan dengan cara ekstrapolasi persamaan pada kondisi penyimpanan normal. Metode akselerasi dapat dilakukan dalam waktu yang lebih singkat dengan akurasi yang baik. Metode ASLT yang sering digunakan adalah dengan model Arrhenius dan model kadar air kritis sebagaimana dijelaskan berikut ini.

Metode pendugaan umur simpan model Arrhenius

Metode ASLT model Arrhenius banyak digunakan untuk pendugaan umur simpan produk pangan yang mudah rusak oleh akibat reaksi kimia, seperti oksidasi lemak, reaksi Maillard, denaturasi protein, dan sebagainya. Secara umum, laju reaksi kimia akan semakin cepat pada suhu yang lebih tinggi yang berarti penurunan mutu produk semakin cepat terjadi. Produk pangan yang dapat ditentukan umur simpannnya dengan model Arrhenius di antaranya adalah makanan kaleng steril komersial, susu UHT, susu bubuk/formula, produk chip/snack, jus buah, mi instan, frozen meat, dan produk pangan lain yang mengandung lemak tinggi (berpotensi terjadinya oksidasi lemak) atau yang mengandung gula pereduksi dan protein (berpotensi terjadinya reaksi kecoklatan).

Karena reaksi kimia pada umumnya dipengaruhi oleh suhu, maka model Arrhenius mensimulasikan percepatan kerusakan produk pada kondisi penyimpanan suhu tinggi di atas suhu penyimpanan normal. Laju reaksi kimia yang dapat memicu kerusakan produk pangan umumnya mengikuti laju reaksi ordo 0 dan ordo 1 (persamaan 1 dan 2). Tipe kerusakan pangan yang mengikuti model reaksi ordo nol adalah degradasi enzimatis (misalnya pada buah dan sayuran segar serta beberapa pangan beku); reaksi kecoklatan non-enzimatis (misalnya pada biji-bijian kering, dan produk susu kering); dan reaksi oksidasi lemak (misalnya peningkatan ketengikan pada snack, makanan kering dan pangan beku). Sedangkan tipe kerusakan bahan pangan yang termasuk dalam rekasi ordo satu adalah (1) ketengikan (misalnya pada minyak salad dan sayuran kering); (2) pertumbuhan mikroorganisme (misal pada ikan dan daging, serta kematian mikoorganisme akibat perlakuan panas); (3) produksi off flavor oleh mikroba; (4) kerusakan vitamin dalam makanan kaleng dan makanan kering; dan (5) kehilangan mutu protein (makanan kering) (Labuza, 1982).


Konstanta laju reaksi kimia (k), baik ordo nol maupun satu, dapat dipengaruhi oleh suhu. Karena secara umum reaksi kimia lebih cepat terjadi pada suhu tinggi, maka konstanta laju reaksi kimia (k) akan semakin besar pada suhu yang lebih tinggi. Seberapa besar konstanta laju reaksi kimia dipengaruhi oleh suhu dapat dilihat dengan menggunakan model persamaan Arrhenius (persamaan 3) sebagai berikut:

Rumus (laboratory)

Model Arrhenius dilakukan dengan menyimpan produk pangan dengan kemasan akhir pada minimal tiga suhu penyimpanan ekstrim. Percobaan dengan metode Arrhenius bertujuan untuk menentukan konstanta laju reaksi (k) pada beberapa suhu penyimpanan ekstrim, kemudian dilakukan ekstrapolasi untuk menghitung konstanta laju reaksi (k) pada suhu penyimpanan yang diinginkan dengan menggunakan persamaan Arrhenius (persamaan 3). Dari persamaan tersebut dapat ditentukan nilai k (konstanta penurunan mutu) pada suhu penyimpanan umur simpan, kemudian digunakan perhitungan umur simpan sesuai dengan ordo reaksinya (persamaan 1 dan 2).

Metode pendugaan umur simpan model Kadar Air Kritis

Kerusakan produk pangan dapat disebabkan oleh adanya penyerapan air oleh produk selama penyimpanan. Produk pangan yang dapat mengalami kerusakan seperti ini di antaranya adalah produk kering, seperti snack, biskuit, krupuk, permen, dan sebagainya. Kerusakan produk dapat diamati dari penurunan kekerasan atau kerenyahan, dan/atau peningkatan kelengketan atau penggumpalan. Laju penyerapan air oleh produk pangan selama penyimpanan dipengaruhi oleh tekanan uap air murni pada suhu udara tertentu, permeabilitas uap air dan luasan kemasan yang digunakan, kadar air awal produk, berat kering awal produk, kadar air kritis, kadar air kesetimbangan pada RH penyimpanan, dan slope kurva isoterm sorpsi air, faktor-faktor tersebut diformulasikan oleh Labuza dan Schmidl (1985) menjadi model matematika (persamaan 4) dan digunakan sebagai model untuk menduga umur simpan. Model matematika ini dapat diterapkan khususnya untuk produk pangan kering yang memiliki kurva isoterm sorpsi air (ISA) berbentuk sigmoid.



Model untuk menduga umur simpan produk pangan yang mudah rusak karena penyerapan air adalah dengan pendekatan metode kadar air kritis. Data percobaan yang diperoleh dapat mensimulasi umur simpan produk dengan permeabilitas kemasan dan kelembaban relatif ruang penyimpanan yang berbeda.

Produk pangan yang mengandung kadar sukrosa tinggi, seperti permen, umumnya bersifat higroskopis dan mudah mengalami penurunan mutu selama penyimpanan yang disebabkan oleh terjadinya penyerapan air. Umur simpan produk seperti ini akan ditentukan oleh seberapa mudah uap air dapat bermigrasi ke dalam produk selama penyimpanan dengan menembus kemasan. Semakin besar perbedaan antara kelembaban relatif lingkungan penyimpanan dibandingkan kadar air produk pangan, maka air semakin mudah bermigrasi.

Kurva ISA sukrosa dan produk pangan yang mengandung sukrosa tinggi lebih sulit ditentukan, karena sifat higroskopis dari gula yang menyebabkan penyerapan air berlangsung terus menerus dan tidak mencapai kondisi kesetimbangan, terutama pada kelembaban relatif (RH) di atas 75% (Guo, 1997). Kurva ISA produk pangan yang mengandung gula tinggi juga tidak berbentuk sigmoid sehingga kadar air ksetimbangan dan kemiringan kurva sulit ditentukan (Adawiyah, 2006). Oleh karena itu, penentuan umur simpan produk pangan yang mengandung kadar gula tinggi tidak dapat menerapkan model persamaan (4). Pendekatan yang dapat dilakukan adalah dengan memodifikasi model persamaan (4) dengan mengganti slope kurva ISA (b) dan kadar air kesetimbangan (Me) dengan perbedaan tekanan (∆P) antara di dalam dan di luar kemasan (Labuza dan Schmidl, 1985). Hal ini didasarkan pada prinsip terjadinya migrasi uap air dari udara ke dalam produk yang disebabkan oleh perbedaan tekanan udara antara di luar kemasan dan di dalam kemasan

Model matematika tersebut dapat dilihat pada persamaan (5). Untuk menentukan ∆P diperlukan data aktivitas air (aw) produk, dengan asumsi terjadi kesetimbangan antara RH di dalam kemasan dengan aw produk.


Referensi

Adawiyah,D.R. 2006. Hubungan Sorpsi Air, Suhu Transisi Gelas dan Mobilitas Air Serta Pengaruhnya Terhadap Stabilitas Produk Pada Model Pangan. Disertasi. Sekolah Pasca Sarjana IPB, Bogor.

Guo,W.X. 1997. Influence of Relative Humidity on The Stress Relaxation of Sucrose Compact. Department of Pharmacy University of Toronto, Canada.

Labuza,T.P. 1982. Shelf Life Dating of Foods. Food and Nutrition Press Inc., Westport, Connecticut.

Labuza,T.P. and Schmidl,M.K. 1985. Accelerated shelf life testing of foods. Food Technology, 39 (9), 57-62, 64, 134.

 

INGIN TAHU LEBIH BANYAK, DOWNLOAD SAJA ARTIKEL DI http://jateng.litbang.deptan.go.id/ind/images/Publikasi/artikel/artikel/heniumursimpan.pdf


Pengujian In Vivo (uji biologi)

Pengujian In Vivo (uji biologi)

    Pengujian secara biologis biasanya menggunakan hewan coba untuk membantu menjalakan penelitian-penalitian yang tidak bisa secara langsung dilakukan dalamtubuh manusia dengan asumsi semua jaringan, sel-sel penyusun tubuh, sertaenzim-enzim ada dalam tubuh hewan coba tersebut memiliki kesamaan dengan manusia.

    Tikus putih (Rattus Norvegicus) adalah hewan percobaan yang paling banyak digunakan. Terdapat lima macam basic stock tikus putih ( Albino Normay rat, Rattus morvegicus) yang biasa digunakan sebagai hewan percobaan di laboraturium, yaitu Long Evans, Osborne Mendel, Shermon, Sporgue Dawley, dan Wistar, beberapa sifat tikus percobaan adalah:

  1. Noctural, berarti aktif pada malam hari dan tidur pada siang hari.
  2. Tidak mempunyai kantung empedu ( gali blader).
  3. tidak dapat mengeluarkan isi perutnya (muntah).
  4. tidak pernah berhenti tumbuh, walaupun kecepataanya menurun setelah berumur 100 hari.

Selain tikus putih yang digunakan sebagai hewan percobaan, terdapat hewan-hewan lain yang dapat digunakan untuk evaluasi nilai gizi makanan, antara lain, mencit, (mouse, Mus musculus), marnot (Guinea pig,
Cavia porcellus), kelinci (Oryctolagus cinuculus), hamster: syrian hamster (Mesocricetus auratus), Chinese/ gray hammster (Cricetulus grisuseus), anjing (Canis familiaris), dan monyet (Rhesus monkey, Macaca Mulatta).

Zat-zat gizi yang diperlukan untuk pertumbuhan tikus hampir sama dengan manusia, yaitu:

  1. Karbohidrat, terdiri dari pati, gula, selulosa.
  2. Minyak/ lemak, asam lemak esensial (terutama linoleat dan linolenat, karena karbohidrat dapat disintesis dalam tubuhnya dari linoleat); apabila kekurangan asam lemak essensial kulitnya bersisik, pertumbuhannya terhambat dan pada kasusu berat dapat menimbulkan kematian.
  3. Protein, asam-asam amino esensial bagi tikus ada 410 macam, yaitu lisin, triptofan, histidin, fenilalanin, leusin, isoleusin, treonin, metionin, valin, dan arginin; arginin sesungguhnya dapat disintesis dalam tubuh tikus, tetapi hanya cukup untuk untuk pemiliharaaan dan tidak cukup untuk pertumbuhan maksimum.
  4. Mineral atau elemen organik, terdiri dari makro elemen: kalsium, fosfor, magnesium, kalium, natrium, khlor damn belerang, serta mikro elemen: besi, tembaga, kobalt, mangan, selenium, iod, seng dan molybdenum.
  5. Vitamin- vitamin, terdiri dari vitamin larut lemak ( A, D, E dan K), serta vitamin larut dalam air ( tiamin/ B1, ribovlafin, niasin/ asam nikotina, pridoksin/ B6, asam pantotenat, asam folat, sianokobalamin/ B12, kholin dan biotin.

    Kandang tikus berlokasi pada tempat yang bebas dari suara ribut dan terjaga dari asap industri atau polutan lanilla. Lantai ruangan harus mudah dibersikan dan disanitasi. Suhu optimum ruangan untuk tikus adalah 22-24 °C dan kelembaban udara 50-60%, dengan ventilasi yang cukup. Tempat makanan harus dibuat cukup besar untuk ad limitum feeding. Demikian tempat minum harus mudah dicapai oleh tikus, botol tempat air minum harus dibersihkan setiap satu minggu sekali. Ransum harus diganti setiap hari dan sisa ransum yang tertinggal jangan digunakan lagi. Tempat ransum harus diletakkan sedemikian rupa sehingga terhindar dari kontaminasi urin dan feses.

    Umumnya tikus yang digunakan untuk percobaan adalah tikus-tikus yang baru disapih (umur kurang lebih 21 hari). Sebelum percobaan dimulai harus dilakukan masa adaptasi selama 4-5 hari untuk membiaskan tikus pada lingkungan laboratorium. Selain itu pada masa adaptasi ini dapat dilakukan pengamatan apakah tikus dapat terus digunakan dalam percobaan ( tidak sakit). Pada masa adaptasi ini biasanya diberikan ransum semi sinthetik
diet atau ransum yang digunakan sebagai control, yaitu kasein dan laktal bumin sebagai sumber proteinnya, dicampur dengan bahan- bahan lain (karbohidrat, lemak, vitamin dan mineral). Bahan- bahan makanan tersebut hanya boleh dicampurkan apabila akan digunakan dan untuk menjaga agar tidak terjadi perubahan akibat pengaruh fisik, kimia atau mikrobiologis dan sebaiknya bahan-bahan tersebut disimpan pada suhu 4 °C ( dalam revrigerator).


Accelerated Shelf Life Testing (ASLT)

Accelerated Shelf Life Testing (ASLT)

created by Lukman Hakim ITP-FTP UB 2006

ASLT diterapkan untuk produk yang mempunyai umur simpan yang panjang paling sedikit satu tahun. Asumsi dasar penggunaan ASLT adalah prinsip kinetika kimia yang diaplikasikan untuk mengukur efek faktor ekstrinsik sepereti: suhu, kelembapan, gas atmosfer dan cahaya yang dapat mempercepat reaksi kerusakan produk. Faktor ekstrinsik dibuat lebih tinggi dari keadaan normal, sehingga reaksi kerusakan dapat lebih cepat berlangsung dibandingkan pada kondisi normal. Karena pengaruh faktor ekstrinsik dapat dikuantifikasi dan besarnya percepatan dapat dihitung, maka umur simpan dapat ditentukan (Robetson, 1993).

Sedangkan menurut Donohoe and Spiro (1998) Accelerated Shelf Life Testing (ALST) merupakan metode yang dapat digunakan untuk memprediksi umur simpan dan kecepatan reaksi penurunan mutu pada beberapa kisaran suhu. Untuk produk makanan yang penyimpananya dalam suhu normal maka rentang suhu pengamatannaya yaitu 850F sampai 1300F dan minimal harus menggunakan tiga kondisi suhu pengamatan. Semakin tinggi suhu pengamatan semakin pendek selang waktu pengamatannya dan semakin pendek dan semakin rendah suhu pengamatannya maka semakin panjang pula selang waktu pengamatannya, namun demikian paling sedikit harus enam kali titik pengamatan (Kuntz, 1996).

Adapun langkah-langkah metode ASLT menurut Labuza and Riboh (1982), yaitu:

  1. Mengevaluasi komponen penyusun produk
  2. 2. Memilih parameter kunci reaksi penurunan mutu yang akan meyebabkan quality loss dan consumer acceptability dan menentukan test apa (sensorik/ instrument) seharusnya dilakukan pada produk selama pemeriksaan.
  3. 3. Memilih faktor ekstrinsik seperti temperatur atau RH ruangan yang mempercepat reaksi penurunan mutu.
  4. 4. Memilih pengemas yang digunakan, lebih baik memilih pengemas yang biasanya efektif dan dapat memperpanjang umur simpan produk.
  5. 5. Menentukan karakteristik mutu produk pada kondisi kritis dengan cara penyimpanan produk pada suhu yang paling tinggi supaya karakteristik produk tersebut lebih cepat melampaui masa simpannya. Selanjutnya dilakukan uji indera/ uji penerimaan konsumen untuk mengetahui apakah produk tersebut masih diterima secara organoleptik. Pada saat produk tidak disukai/ ditolak oleh konsumen segera dianalisa parameter mutu yang merupakan kunci reaksi penurunan mutu. Nilai ini merupakan nilai parameter mutu pada kondisi kritis atau disebut juga mutu produk akhir.
  6. 6. Laju reaksi penurunan mutu ditentukan dengan membuat plot antara penyimpanan (hari) dengan nilai parameter mutu yang dianalisa. Dari sini diperoleh beberapa persamaan regresi (tergantung berapa jumlah suhu penyimpanan) Y = a + bx, dimana Y = nilai karakter produk, x = waktu penyimpanan (hari), a = nilai karakteristik bahan pada awal penyimpanan, b = laju reaksi penurunan mutu.
  7. 7. Nilai slope b yang merupakan laju reaksi penurunan mutu disebut juga dengan k yaitu konstanta laju reaksi penurunan mutu. Nilai ln k dan 1/T yang merupakan parameter persamaan Arhenius ditabulasikan, selanjutnya nilai ln k diplotkan terhadap nilai 1/T (K-1) dan didapatkan nilai intersep dan slope dari persamaan regresi linier ln k = ln k0 – (E/R)(1/T). Dimana ln k0 = intersep, E/R = slope, E = energi aktivasi dan R = konstanta gas ideal = 1,986 kal/mol  K.
  8. 8. Dengan persamaan yang diperoleh pada tahap 7 diperoleh nilai konstanta k yang merupakan faktor pre-eksponensial dan nilai energi aktivasi reaksi perubahan karakteristik bahan (Ea =E). Lebih lanjut ditentukan model persamaan kecepatan reaksi (k) perubahan parameter produk k = k0.eE/RT. Persamaan ini yang disebut sebagai persamaan Arhenius.
  9. 9. Penentuan umur simpan produk dipilih dari parameter yang mempunyai nilai energi aktivasi terendah. Kemudian dihitung dengan menggunakan persamaan kinetika reaksi ordo nol At = A0 + kt. Perhitungan dilakukan dengan menggunakan data (nilai) parameter mutu awal bahan (kondisi bahan pada waktu t = 0 atau A0) dan nilai parameter mutu akhir bahan (kondisi bahan pada waktu t = t atau At) atau nilai kritis.

Media Uji Pemecahan Komponen Makanan oleh Mikroorganisme

Media Uji Pemecahan Komponen Makanan oleh Mikroorganisme

created by Mahasiswa ITP-FTP UB

1. Tinjauan tentang Media

1.1 Media , Fungsi Media dan Tipe Media

Pembiakan mikroba dalam laboratorium memerlukan medium yang berisi zat hara serta lingkungan pertumbuhan yang sesuai dengan mikroorganisme. Zat hara digunakan oleh mikroorganisme untuk pertumbuhan, sintesis sel, keperluan energi dalam metabolisme, dan pergerakan. Lazimnya, medium biakan berisi air, sumber energi, zat hara sebagai sumber karbon, nitrogen, sulfur, fosfat, oksigen, hidrogen serta unsur – unsur sekelumit (trace element). Dalam bahan dasar medium dapat pula ditambahkan faktor pertumbuhan berupa asam amino, vitamin atau nukleotida (Waluyo, 2004).

Media terbagi menjadi 2 golongan besar (Waluyo, 2004):

1. Media Hidup

Media hidup pada umumnya dipakai dalam Laboratorium Virologi untuk pembiakan berbagai virus, sedangkan dalam Laboratorium Bakteriologi hanya beberapa kuman tertentu saja, dan terutama pada hewan percobaan. Contoh media hidup adalah: hewan percobaan (termasuk manusia), telur berembrio, biakan jaringan, dan sel – sel biakan bakteri tertentu untuk penelitian bakteriofage (bakteri yang terinfeksi oleh virus).

2. Media Mati

Media mati terbagi menjadi beberapa macam, yakni:

a. Media padat

Media padat diperoleh dengan cara menambahkan agar – agar. Agar berasal dari ganggang/alga yang berfungsi sebagai bahan pemadat. Alga digunakan karena bahan ini tidak diuraikan oleh mikroorganisme, dan dapat membeku pada suhu di atas 45°C. Media padat terbagi menjadimedia agar miring, dan agar deep.

b. Media Setengah Padat

Media setengah padat dibuat dengan bahan sama dengan media padat, akan tetapi yang berbeda adalah komposisi agarnya. Media ini digunakan untuk melihat gerak kuman secara mikroskopik.

c. Media Cair

Media cair sering digunakan untuk mempelajari sifat faali dan genetika mikroorganisme. Harganya cukup mahal karena senyawa organik dan anorganik yang ditambahkan harus murni. Contoh media cair: ciran Hanks, Locke, Thyrode, Eagle.

1.1.2     Strach Agar (SA)

Media Starch Agar digunakan untuk menumbuhkan mikroorganisme amilolitik dimana terdiri dari pati 1%. Mikroorganisme amilolitik akan memecah pati maupun glikogen. Pati yang ada pada media SA dipecah oleh amylase yang ditandai dengan perubahan warna yaitu warna coklat jika hidrolisis pati tidak berlangsung sempurna, warna kuning (transparan) jika berlangsung sempurna dan warna biru jika tidak memecah pati (Winarno, 2002).

Starch Agar tersusun atas 0.5 gram KNO3 , 1 gram K2HPO4, 0.2 gram MgSO4 · 7H2O , 0.1 gram CaCl2, FeCl2 dan pati kentang 10 gram. Pati akan dipecah menjadi monosakarida yang kemudian dipakai untuk energi ( Fardiaz, 1992).

Pembuatan Media  SA dilakukan dengan cara melarutkan pati dengan air suling dalam erlenmeyer dan diukur dengan volume yang sesuai, selanjutnya pH (derajat keasaman atau kebasaan) medium fluida ditentukan dan disesuaikan (dengan penambahan larutan basa atau asam) denga nilai yang optimum bagi pertumbuhan mikroorganisme. Lalu medium tersebut dituang pada wadah yang sesuai seperti labu, tabung atau botol dan ditutup dengan sumbat kapas atau tutp plastik atau logam sebelum disterilisasi dan langkah terakhir adalah mensterilkan medium menggunakan autoklaf yang dilakukan pada suhu di bawah tekanan uap (Pelczar,1986).

1.1.3 Skim Milk Agar

Media Skim Milk Agar (SMA) terdiri dari PCA steril dan susu skim. Susu skim digunakan sebagai sumber substrat. Susu skim merupakan susu yang mengandung protein tinggi 3.7 % dan lemak 0.1% ( Jay, 1991).

Susu skim mengandung kasein sebagi protein susu dimana akan dipecah oleh mikroorganisme proteolitik menjadi senyawa nitrogen terlarut sehingga pada koloni dikelilingi area bening. Menunjukkan mikroba tersebut mempunyai aktivitas proteolitik ( Fardiaz,1992).

Media SMA mempunyai komposisi 5 gram kasein, 2.5 gram ekstrak yeast, 1 gram Skim Milk Agar, 1 gram glukosa, dan 10.5 gram agar (Sunardi, 1992 ).

Pembuatan media SMA  diawali dengan penyiapan bahan. Media alamiah seperti susu skim, tidak menimbulkan masalah di dalam penyiapannya sbagai media, hanya semata – mata dituang ke dalam wadah-wadah yang sesuai seperti tabung reaksi atau labu dan disterilkan sebelum digunakan. Selanjutnya dilakukan pengaturan pH yang sesuai dengan pertumbuhan mikroba yang akan dikulturkan. Pengaturan ini bisa dilakukan dengan penambahan asam atau basa. Selanjutnya medium di masukkan dalam wadah yang sesuai dan lalu disterilisasi dengan menggunakan panas di bawah tekanan uap (Pelczar,1986).

1.1.4     Na + 1% Margarin

Nutrient Agar tersusun atas 5 gram peptone, 3 gram beef ekstrak dan 10 gram agar. Media ini dibuat dengan mencampur bahan pada 1 liter aquades, disterilisasi pada autoklaf 121OC selama 15 menit, pH 7±0.2 (Brock,et.al., 1994).

Untuk mengidentifikasi mikroorganisme lipolitik, media NA ditambah dengan 1% margarine (lemak) dan indikator sebagai substrat yang dirombak oleh mikroorganisme lipolitik dan menghasilkan asam lemak dan gliserol. Asam lemak yang tebentuk akan menurunkan pH medium yang akan diindikasikan oleh pembentukan warna merah pada kondisi asam dan pada kondisi netral tidak berwarna. Sedangkan indicator yang digunakan adalah indikator phenol red, dimana indicator ini akan menunjukkan perubahan warna merah menjadi kuning dalam suasana asam dengan range ph 6.9 berwarna kunig dan akan berubah warna menjadi merah apabila pH 8.5 (Fardiaz, 1992).

1.1.5     Nutrient Agar

Nutrient Agar merupakan suatu medium yang mengandung sumber nitrogen dalam jumlah cukup, yaitu 0,3 % ekstrak daging sapi, 0,5 % peptone tetapi tidak mengandung sumber karbohidrat, jadi baik untuk pertumbuhan bakteri, namun kapang dan khamir tidak dapat tumbuh dengan baik (Fardiaz,1993).

Cara pembuatannya adalah larutkan bahan-bahn tersebut dalam air suling sebanyak 1 liter kemudian dipanaskan hingga mendidih dan dituangkan kedalam labu atau tabung dan disterilisasikan selama 15 menit pada suhu 1210C, pH akhirnya 7,4 ±0,2 pada suhu 370C. medium kemudian dibuka dan disimpan pada suhu dibawah 80C dan terlindung dari sinar secara langsung (anonymous,2004).

1.1.6     Plate Count Agar

Komposisi dari media PCA yaitu Tryptone 3, Dekstrose 1 , dan Agar 9 . Media disimpan dibawah suhu 80C dan dilindungi dari cahaya langsung. pH akhir adalah 7 pada suhu 370C. dalam bentuk bubuk, disimpan ditempat kering dan container yang tertutup pada suhu 20-250C. cara pembuatan PCA yaitu dengan mensuspensikan 17,9 gram bubuk PCA dalam 1 liter air terdestilasi. Larutkan dan didihkan sambil terus diaduk, campur dan distribusikan dalam container akhir. Sterilisasi dengan menggunakan autoklaf pada suhu 1210C selama 15 menit (Anonymous,1990).

PCA direkomendasikan untuk mengisolasi organisme dalam susu dan diary product lainnya. Tryptone menyediakan substansi asam amino dan nitrogen kompleks yang lain, sedangkan yeast ekstrak menyuplai vitamin b kompleks. Karakterisasi kultur setelah 24 jam pada suhu 35 0C. organisme yang tumbuh yaitu E. coli, B. subtilis, L. lactis, Lysteria monocytogenes, S. aureus, S. agalatus, dan L. achidophilus (Anonymous, 1990).

1.1.7     Salmonella shigella Agar

Salmonella Shigella (SS) agar merupakan media agar diferensial yang digunakan untuk mengisolasi Enterobacteriaceae patogen, khususnya Salmonella spp. dan Shigella spp. dari makanan, alat-alat kesehatan lain, dan bahan percobaan klinik. Aksi penghambatan pada bakteri koliform dan gram-positif dilakukan oleh campuran garam bile dan brilliant green pada medium. Sodium sitrat menghambat bakteri gram-positif. Neutral red merupakan pH indikator bagi bakteri yang memfermentasi laktosa akan menghasilkan koloni berwarna merah jambu. Beberapa Salmonella and Proteus spp. menghasilkan bulatan hitam (presipitat ferri sulfat) di tengah koloni sebagai hasil produksi gas H2S.

Formula SSA per liter air destilat (Anonymous m, 2006)

  • Beef Extract                                               : 5.0 g
  • Pancreatic Digest of Casein                 : 2.5 g
  • Peptic Digest of Animal Tissue           : 2.5 g
  • Lactose                                                        : 10.0 g
  • Bile Salts                                                      : 8.5 g
  • Sodium Citrate                                          : 8.5 g
  • Sodium Thiosulfate                                 : 8.5 g
  • Ferric Citrate                                             : 1.0 g
  • Neutral Red                                                : 0.025 g
  • Agar                                                               : 13.5 g
  • Brilliant Green                                           : 0.330 mg

1.1.8        PDA (Potato Dextrose Agar)

Media PDA (Potato Dextrose Agar) digunakan untuk pertumbuhan, isolasi dan enumerasi dari kapang dan khamir pada bahan makanan dan bahan lainnya. Karbohidrat dan senyawa yang diambil dari kentang mendukung pertumbuhan khamir dan kapang dan pada kondosi pH yang diturunkan dapat menghambat pertumbuhan kontaminan (bakteri yang ikut). Jika medium ini dipakai untuk perhitungan jamur, pH medium harus diturunkan hingga 3,5 karena jamur akan tumbuh pada medium ini untuk mengembangkan morfologinya (Thatcher and Clark, 1987).

Fungsinya sebagai media selektif untuk pertumbuhan jamur dan yeast hingga sering digunakan sebagai uji untuk menentukan jumlah jamur dan yeast yang dilakukan dengan menumbuhkan mikroba pada permukaan sehingga akan membentuk koloni yang dapat diikat atau dihitung (Fardiaz, 1993).

1.1.9      VRBA (Violet Red Bile Agar)

Violet Red Bile Agar merupakan media untuk menghitung jumlah bakteri gram negatif dengan menambahkan komponen yang dapat menghambat pertumbuhan bakteri gram positif kedalam medium. Dengan menambahkan garam bile maka VRB digunakan untuk menyeleksi anggota dari famili Enterobactericeae (Fardiaz, 1993).

Komposisi dari media VRBA yaitu ekstrk yeast 3 g.L-1, pepton 1 g.L-1, NaCl 9 g.L-1,   Garam Bile 1,5 g.L-1, laktosa 10 g.L-1, neutral red 0.03 g.L-1, violet kristal 0,002 g.L-1, dan bacteriocal agar 12 g.L-1. pH akhir dari media campuran ini adalah 7,1 ± 0,2 (Anonymous, 1990b).

Mekanisme kerjanya adalah kristal violet dan garam bile menghambat pertumbuhan primer dari bakteri gram positif. Degradasi laktosa menjadi asam diindikasikan oleh pH indikator neutral red yang mengubah warna menjadi merah dan mengendapkan asam bile (Anonymous, 1992).

 


EKSTRAKSI PELARUT

EKSTRAKSI DENGAN PELARUT

(Rizky Kurnia-ITP UB)


    Ekstraksi adala jenis pemisahan satu atau beberapa bahan dari suatu padatan atau cairan. Proses ekstraksi bermula dari penggumpalan ekstrak dengan pelarut kemudian terjadi kontak antara bahan dan pelarut sehingga pada bidang datar antarmuka bahan ekstraksi dan pelarut terjadi pengendapan massa dengan cara difusi. Bahan ekstraksi yang telah tercampur dengan pelarut yang telah menembus kapiler-kapiler dalam suatu bahan padat dan melarutkan ekstrak larutan dengan konsentrasi lebih tinggi di bagian dalam bahan ekstraksi dan terjadi difusi yang memacu keseimbangan konsentrasi larutan dengan larutan di luar bahan.

    Ekstraksi dengan pelarut dapat dilakukan dengan cara dingin dan cara panas. Jenis-jenis ekstraksi tersebut sebagai berikut:

  • Cara Dingin
    • Maserasi, adalah ekstraksi menggunakan pelarut dengan beberapa kali pengadukan pada suhu kamar. Secara teknologi termasuk ekstraksi dengan prinsip metoda pencapaian konsentrasi pada keseimbangan. Maserasi kinetic berarti dilakuakn pengadukan kontinyu. Remaserasi berarti dilakukan pengulangan penambahan pelarutsetelah dilakukan ekstraksi maserat pertama dan seterusnya.
    • Perkolasi, adalah ekstraksi pelarut yang selalu baru sampai sempurna yang umumnya pada suhu ruang. Prosesnya didahului dengan pengembangan bahan, tahap maserasi antara, tahap perkolasi sebenarnya (penampungan ekstrak) secara terus menerus samapai diperoleh ekstrak perkolat yang jumlahnya 1-5 kali bahan
  • Cara Panas
    • Reflux, adalah ekstraksi pelarut pada temperature didihnya selamawaktu tertentu dan jumlah pelarut terbatas yang relative konstan dengan adanya pendingin balik
    • Soxhlet, adalah ekstraksi menggunakan pelarut yang selalu baru menggunakan alat khusus sehingga terjadi ekstraksi kontinyu dengan jumlah pelarut relative konstan dengan adanya pendingin balik.
    • Digesi, adalahmaserasi kinetic pada temperature lebih tinggi dari temperature kamar sekitar 40-50 C
    • Destilasi uap, adalah ekstraksi zat kandungan menguap dari bahan dengan uap air berdasarkan peristiwa tekanan parsial zat kandungan menguap dengan fase uap air dari ketel secara kontinyu sampai sempurna dan diakhiri dengan kondensasi fse uap campuran menjadi destilat air bersama kandungan yang memisah sempurna atau sebagian.
    • Infuse, adalah ekstraksi pelarut air pada temperature penangas air 96-98 C selama 15-20 menit.

Pelarut yang baik untuk ekstraksi adalah pelarut yang mempunyai daya melarutkanyang tinggi terhadap zat yang diekstraksi. Daya melarutkan yang tinggi ini berhubungan dengan kepolaran pelarut dan kepolaran senyawa yang diekstraksi. Terdapat kecenderungan kuat bagi senyawa polar larut dalam pelarut polar dan sebaliknya.

Pemilihan pelarut pada umumnya dipengaruhi oleh:

  • Selektivitas, pelarut hanya boleh melarutkan ekstrak yang diinginkan.
  • Kelarutan, pelarut sedapat mungkin memiliki kemampuan melarutkan ekstrak yang besar.
  • Kemampuan tidak saling bercampur, pada ekstraksi cair, pelarut tidak boleh larut dalam bahan ekstraksi.
  • Kerapatan, sedapat mungkin terdapat perbedaan kerapatan yang besar antara pelarut dengan bahan ekstraksi.
  • Reaktivitas, pelarut tidak boleh menyebabkan perubahan secara kimia pada komponen bahan ekstraksi.
  • Titik didih, titik didh kedua bahan tidak boleh terlalu dekat karena ekstrak dan pelarut dipisahkan dengan cara penguapan, distilasi dan rektifikasi.
  • Kriteria lain, sedapat mungkin murah, tersedia dalam jumlah besar, tidak beracun, tidak mudah terbakar, tidak eksplosif bila bercampur udara, tidak korosif, buaka emulsifier, viskositas rendah dan stabil secara kimia dan fisik.

Karena tidak ada pelarut yang sesuai dengan semua persyaratan tersebut, maka untuk setiap proses ekstraksi harus dicari jenis pelarut yang paling sesuai dengan kebutuhan.


Masukkan alamat surel Anda untuk berlangganan blog ini dan menerima pemberitahuan tulisan-tulisan baru melalui email.

Bergabunglah dengan 108 pengikut lainnya.

Pos-pos Terakhir

Mohon maaf jika artikel yang di sajikan berasal dari banyak sumber, sumber yang masih utuh saya tampilkan sumber aslinya, tapi seringkali saya lupa, mohon di maafkan. saya coba perbaiki terus kualitas dan kuantitas blog ini.
Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 108 pengikut lainnya.