“Allahumma tawwi umurana fi ta’atika wa ta’ati rasulika waj’alna min ibadikas salihina”

ILMU DAN TEKNLOGI PANGAN

PENYEBAB RASA PAHIT PADA TEMPE

PENYEBAB RASA PAHIT PADA TEMPE

(oleh Rizky Kurnia Widiantoko)

 
 

 After taste pahit dapat disebabkan oleh hidrolisis asam-asam amino yang terjadi pada reaksi Maillard, baik saat proses pembuatan tepung tempe maupun saat pemanggangan roti. Johnson dan Peterson menyebutkan bahwa terdapat asam-asam amino yang menimbulkan rasa pahit seperti lisin, arginin, prolin, fenilalanin, dan valin. Asam amino lisin merupakan asam amino yang memiliki rasa paling pahit dibandingkan asam amino penyebab rasa pahit lainnya (kurniawati, 2012).

Senyawa penyebab timbulnya rasa pahit terdapat pada fraksi lemak kasar. Minyak kasar ini mempunyai bilangan asam, peroksida, dan Triobarbituric acid (TBA) yang tinggi, sehingga diduga penyebab timbulnya rasa pahit adalah senyawa-senyawa hasil degradasi/oksidasi trigliserida. Perebusan tempe mentah sebelum diolah menjadi tepung tempe dapat mengurangi rasa pahit (Muchtady, 1993)

Bau dan rasa langu merupakan salah satu masalah dalam pengolahan kedelai. Rasa langu yang tidak disukai ini dihasilkan oleh adanya enzim lipoksidase pada kedelai. Hal ini terjadi karena enzim lipoksidase menghidrolisis atau menguraikan lemak kedelai menjadi senyawa- senyawa penyebab bau langu, yang tergolong pada kelompok heksanal dan heksanol. Senyawa-senyawa tersebut dalam kosentrasi rendah sudah dapat menyebabkan bau langu. Disamping rasa langu, faktor penyebab off-flavor yang lain dalam kedelai adalah rasa pahit dan rasa kapur yang disebabkan oleh adanya senyawa-senyawa glikosida dalam biji kedelai. Diantara glikosida-glikosida tersebut, soyasaponin dan sapogenol merupakan penyebab rasa pahit yang utama dalam kedelai dan produk-produk non fermentasinya. Senyawa glikosida lain yang menyebabkan off-flavor pada kedelai adalah isoflavon dan gugus aglikonya. Glikosida tersebut menyebabkan timbulnya rasa kapur pada susu kedelai dan produk nonfermentasi lainnya. Senyawa isoflavon dalam kedelai terdiri dari genistin dan daidzin, sedangkan gugus aglikonnya masing-masing disebut genistein dan daidzein (Santoso, 2009).

Rhizopus oryzae memiliki aktivitas protesae yang kedua tertinggi namun memiliki aktivitas amilase yang tinggi sehingga kurang baik untuk membuat produk tempe karena enzim ini memecah pati dari biji-bijian menjadi gula sederhana yang kemudian mengalami fermentasi menjadi asam organik dan menghasilkan flavor yang tidak diinginkan, aroma serta warna yang gelap. Oleh karena itu, kapang ini dapat digunakan untuk membuat tempe yang baik bila dikombinasikan dengan Rhizopus oligosporus (Suhendri, 2009)

Secara organoleptik, tempe yang nikmat adalah setelah mengalami fermentasi sekitar 30 jam, karena rasa netral dan bau yang tidak menyengat, selain itu juga kandungan gizi termasuk asam lemak berada pada kondisi maksimal. Pengukusan atau perebusan dalam waktu singkat sekitar 10 menit sangat disarankan untuk mempertahankan semua zat gizi tempe.

 

Muchtadi, Deddy. 1993. Isolasi Senyawa Penyebab Rasa Pahit Yang Terbentuk Selama Proses Pembuatan Tepung Tempe. IPB. Bogor

Santoso. 2009. Susu Kedelai dan Soygurt. Faperta UWG.

Suhendri. 2009. Studi Kinetika Perubahan Mutu Tempe Selama Proses Pemanasan. Ipb. Bogor

Kurniawati. 2012. Pengaruh Substitusi Tepung Terigu Dengan Tepung Tempe Dan Tepung Ubi Jalar Kuning Terhadap Kadar Protein, Kadar Β-Karoten, Dan Mutu Organoleptik Roti Manis. Journal Of Nutrition College, Volume 1. Http://Ejournal-S1.Undip.Ac.Id/Index.Php/Jnc.


Gum Arab

Gum arab dihasilkan dari getah bermacam-macam pohon Acasia sp. di Sudan dan Senegal. Gum arab pada dasarnya merupakan serangkaian satuan-satuan D-galaktosa, L-arabinosa, asam D-galakturonat dan L-ramnosa. Berat molekulnya antara 250.000-1.000.000. Gum arab jauh lebih mudah larut dalam air dibanding hidrokoloid lainnya. Pada olahan pangan yang banyak mengandung gula, gum arab digunakan untuk mendorong pembentukan emulsi lemak yang mantap dan mencegah kristalisasi gula (Tranggono dkk,1991). Gum dimurnikan melalui proses pengendapan dengan menggunakan etanol dan diikuti proses elektrodialisis (Stephen and Churms, 1995). Menurut Imeson (1999), gum arab stabil dalam larutan asam. pH alami gum dari Acasia Senegal ini berkisar 3,9-4,9 yang berasal dari residu asam glukoronik. Emulsifikasi dari gum arab berhubungan dengan kandungan nitrogennya (protein).

Gum arab dapat meningkatkan stabilitas dengan peningkatan viskositas. Jenis pengental ini juga tahan panas pada proses yang menggunakan panas namun lebih baik jika panasnya dikontrol untuk mempersingkat waktu pemanasan, mengingat gum arab dapat terdegradasi secara perlahan-lahan dan kekurangan efisiensi emulsifikasi dan viskositas.

Menurut Alinkolis (1989), gum arab dapat digunakan untuk pengikatan flavor, bahan pengental, pembentuk lapisan tipis dan pemantap emulsi. Gum arab akan membentuk larutan yang tidak begitu kental dan tidak membentuk gel pada kepekatan yang biasa digunakan (paling tinggi 50%). Viskositas akan meningkat sebanding dengan peningkatan konsentrasi (Tranggono dkk, 1991). Gum arab mempunyai gugus arabinogalactan protein (AGP) dan glikoprotein (GP) yang berperan sebagai pengemulsi dan pengental (Gaonkar,1995).

Hui (1992) menambahkan bahwa gum arab merupakan bahan pengental emulsi yang efektif karena kemampuannya melindungi koloid dan sering digunakan pada pembuatan roti. Gum arab memiliki keunikan karena kelarutannya yang tinggi dan viskositasnya rendah. Karakteristik kimia gum arab berdasar basis kering dapat dilihat pada Tabel

Komponen Nilai (%)
Galaktosa 36,2 ± 2,3
Arabinosa 30,5 ± 3,5
Rhamnosa 13,0 ± 1,1
Asam glukoronik 19,5 ± 0,2
Protein 2,24 ± 0,15
Sumber : Glicksman (1992)

Ditulis oleh Ari Setyawan (Alumni Jurusan Teknologi Hasil Pertanian Universitas Brawijaya 2007)

Daftar Pustaka
Alinkolis, J. J. 1989. Candy Technology. The AVI Publishing Co. Westport-Connecticut
Gaonkar, A. G. 1995. Inggredient Interactions Effects on Food Quality. Marcell Dekker, Inc., New York
Hui, Y. H. 1992. Encyclopedia of Food Science and Technology. Volume II. John Willey and Sons Inc, Canada
Imeson, A. 1999. Thickening and Gelling Agent for Food. Aspen Publisher Inc, New York
Stephen, A. M. and S. C. Churms. 1995. Food Polysaccarides and Their Applications. Marcell Dekker, Inc, New York
Tranggono, S., Haryadi, Suparmo, A. Murdiati, S. Sudarmadji, K. Rahayu, S. Naruki, dan M. Astuti. 1991. Bahan
Tambahan Makanan (Food Additive). PAU Pangan dan Gizi UGM, Yogyakarta


SIFAT & KARAKTERISTIK PROTEIN WHEY

PROTEIN WHEY

(oleh mahasiswa ITP-FTP UB)

Protein memiliki beberapa sifat fungsional, diantara sifat protein yang fungsional ini adalah kelarutan karena punya pengaruh yang signifikan dan penting dalam mempengaruhi sifat fungsional protein. Secara umum, protein yang digunakan memiliki kelarutan tinggi, dalam rangka memberikan emulsi yang baik, busa, gelatin dan properti (Nakai & Chan, 1985, Wit, 1989). Dengan kata lain, penurunan kelarutan protein berpengaruh pada fungsinya (Vojdani, 1996). Kelarutan protein berhubungan dengan permukaan hidrofobik (protein-protein) dan hidrofilik (protein-pelarut) interaksi, dalam hal makanan, pelarut seperti air, dan karena itu kelarutan protein diklasifikasikan sebagai hidrofilik.

Kelarutan protein adalah fungsi dari beberapa faktor, seperti faktor lingkungan, terutama pH dan suhu. PH larutan mempengaruhi sifat dan distribusi muatan total protein. Secara umum, protein lebih larut dalam pH rendah (asam) atau tinggi (alkali) karena memiliki kelebihan yang sama, menghasilkan penolakan antara molekul dan, akibatnya berkontribusi terhadap kelarutan terbesar (Fox, 1989).

Kelarutan adalah kemampuan suatu zat untuk bisa larut. Suhu mempengaruhi kelarutan karena dipengaruhi oleh wujud zat. Semakin besar suhu maka kemampuan senyawa untuk larut akan semakin tinggi. Oleh karena itu, makalah ini dibuat dengan menggunakan jurnal yang berjudul kurva kelarutan whey protein pada beberapa suhu. Bila suhu dinaikkan maka protein akan terdenaturasi.

Karakteristik Fisik Bahan Terkait Komponen Kimiawinya

Whey adalah hasil samping pembuatan keju secara alami. biasanya whey dianggap limbah industri. Kini, whey telah dimanfaatkan untuk bahan pemanis yang digunakan dalam kembang gula, es krim, dan produk makanan lainnya. Karakteristik kimiawi protein Whey sebagian besar terdiri atas komponen protein. Protein whey mewakili 20% nitrogen dalam susu sapi, protein ini dapat dipecah menjadi 2 fraksi yaitu fraksi tidak larut (b-lactoglogulin) dan fraksi yang larut (a-lactalbumin). Kedua fraksi whey protein tersebut digolongkan heterogen. Globulin penting yang terkandung dalam susu adalah immunoglobulin G, namun juga terkandung sebagian kecil IgA, IgM dan IgE. Selain mengandung protein, whey juga mengandung vitamin, mineral, lemak dan laktosa yang baik untuk tubuh manusia (Wong et al, 1996). Sedangkan karakteristik fisiknya adalah terjadinya konfigurasi entropi jika dipanaskan 65-70˚C. setelah di panaskan protein whey bias tetap utuh atau terpecah menjadi molekul-molekul kecil tergantung pada keseimbangan interaksinya pada saat terjadi proses pemanasan. Proses pengolahan whey protein biasanya menyebabkan product menjadi gel dan sensitive terhadap pH tertentu.

2.2. Proses menentukan kelarutan produk protein makanan

Menurut Morr et al. (1985) dalam upaya mengembangkan studi kolaboratif untuk menentukan kelarutan produk protein makanan, hal pertama yang harus dilakukan adalah menentukan air dadih yang berfungsi untuk menentukan kelarutan protein tersebut. Sebanyak 0,5 gram produk protein kering akurat ditimbang dalam skala Bosch-SEA200 semi analitik. Dan di dalam gelas terpisah sebanyak 0,1 L standar dan Aliquot beberapa 5,85 gram / L larutan NaCl yang ditambahkan dilakukan proses pengadukan untuk membentuk seperti pasta halus. Tambahan 5,85 g / L larutan NaCl yang ditambahkan berfungsi untuk membawa total volume pada dispersi menjadi sekitar 0,04 L. Setelah itu, campuran tersebut dipindahkan ke dalam gelas, yang kemudian terjadi sirkulasi panas dalam gelas tersebut. Holding pada gelas dimaksudkan penggabungan antara termostatik (Nova Tecnica), dan suhu dipertahankan sesuai dengan keperluan percobaan tersebut. Dalam penelitian ini, suhu bervariasi dari 40 sampai 90 °C suhu maksimum yang diizinkan di pHmeter tersebut. Nilai pH bervariasi 5,0-6,8, dan dipertahankan sesuai dengan kepentingan setiap percobaan dengan menambahkan NaOH 4.0 gram / L atau 3,65 HCl gram / L solusi saat diperlukan setelah pHmeter telah dibaca (Marconi – model PA200). Untuk setiap suhu dan kasus pH, percobaan dilakukan empat kali dan dihitung nilai rata-rata dari mereka.

Persentase protein terlarut dihitung melalui mengikuti persamaan :


Dimana :    P.S = Kadar protein terlarut dalam sampel [g / 100g]

        A = Konsentrasi protein supernatan [g / L]

        W = Sampel berat [g]

        S = Sampel konsentrasi protein [g / 100g]

  1. Karakterisasi Produk

Banyak produk yang digunakan untuk menghitung kelarutan protein disajikan karakteristik komposisi whey centesimal, dan hasilnya dirangkum dalam tabel 1.


Tabel 1. Centesimal komposisi ALACENTM 895

  1. Nilai Kelarutan

Tabel (2) menunjukkan nilai protein rata-rata kelarutan untuk ALACENTM 895. Nilai-nilai yang ada dalam tabel adalah dihitung dari persamaan (1). Nilai kelarutan protein whey diilustrasikan pada gambar. 2

Tabel 2. Protein kelarutan nilai protein whey


 

Kelarutan

Kelarutan suatu senyawa bergantung pada sifat fisika dan kimia zat terlarut dan pelarut, juga bergantung pada faktor temperatur, tekanan, pH larutan, dan untuk jumlah yang lebih kecil, bergantung pada hal terbaginya zat terlarut. Adapun kelarutan didefenisikan dalam besaran kuantitatif sebagai konsentrasi zat terlarut dalam larutan jenuh pada temperatur tertentu, dan secara kualitatif didefenisikan sebagai interaksi spontan dari dua atau lebih zat untuk membentuk dispersi molekuler homogen.

Kelarutan dalam besaran kuantitatif sebagai konsentrasi zat terlarut dalam larutan jenuh pada temperature tertentu dan secara kualitatif didefinisikan sebagai molekuler homogen. Kelarutan suatu bahan dalam suatu pelarut tertentu menunjukkan konsentrasi maksimum larutanyang dapat dibuat dari bahan pelarut tersebut. Hasil dari zat yang tersebut ini disebut larutan jenuh.

Menurut jurnal yang kami dapat, dengan beberapa protein yang biasanya memiliki sedikit kelarutan pada titik isoelectric (PI), yaitu interaksi protein-protein meningkat karena gaya elektrostatik dari molekul adalah minimal dan air kurang berinteraksi dengan molekul protein. Kondisi ini menguntungkan bagi molekul protein untuk mendekati satu sama lain dan agregat, mungkin mengendap. Pada nilai pH di atas dan di bawah PI, dimana protein memiliki muatan negatif atau positif , air lebih berinteraksi dengan muatan protein.

Muatan netral dan tolakan muatan berpengaruh terhadap kelarutan protein yang lebih besar dan protein dapat tinggal di dalam larutan. Untuk sejumlah besar protein, PI nya adalah di kisaran 3,5 dan 6,5. Pada keasaman ekstrim atau basic pH value protein dapat terungkap dan lebih terlihat untuk kelompok hidrofobik.

Suhu juga merupakan faktor yang memiliki pengaruh dalam protein kelarutan. Secara umum, kelarutan protein meningkat dengan suhu antara 40-50 ° C. Bila suhu dari larutan cukup ditinggikan untuk waktu yang diberikan, protein akan mengalami denaturasi. Protein yang terdenaturasi oleh pengaruh suhu di non-kovalen obligasi, yang terlibat adalah stabilisasi struktur sekunder dan tersier, misalnya, hidrogen, hidrofobik dan elektrostatik obligasi.

Sebuah studi yang terintegrasi dilakukan pada efek dari temperatur dan pH terhadap kelarutan protein whey. Kelarutan ditentukan eksperimental pada kisaran suhu 40-90 ° C, dan pH kisaran 5,0 – 6,8. Hasil penelitian menunjukkan bahwa, baik suhu dan pH dipengaruhi kelarutan protein; selain itu, nilai kelarutan adalah minimum di pH 5,0 untuk semua nilai suhu. Penelitian juga menunjukkan bahwa kelarutan menurun seiring dengan suhu yang meningkat.

Berikut adalah grafik atau penggambaran dari nilai kelarutan protein Whey :

 

 

 

 

 

 

 

 

 

 

Dari tabel 2 dan Gambar.2 dapat diamati bahwa untuk suhu apapun, nilai-nilai kelarutan adalah minimum pada pH 5,0 (titik isoelektrik dekat dari protein whey), dalam kondisi seperti protein-protein interaksi yang meningkat karena gaya elektrostatika yang minimum dan air kurang berinteraksi dengan molekul protein. Pada suhu 40 °C, di mana struktur protein kurang terpengaruh karena aksi panas, dapat diamati bahwa untuk pH di atas 5,0 (titik isoelektrik b-laktoglobulin) kelarutan meningkat, karena dalam kondisi protein memiliki muatan bersih positif atau negatif, dan air lebih banyak berinteraksi dengan molekul protein. Tentang ilustrasi sebelumnya bisa mengamati bahwa dekat pH netral (pH = 6,8) Kelarutan menurun dengan suhu karena pengaruh suhu dalam obligasi yang terlibat dalam stabilisasi struktur sekunder dan tersier, dimana yang berlangsung interaksi di antara kelompok-kelompok hidrofobik, mengurangi protein yang air interaksinya menunjukkan bahwa denaturasi termal protein telah terjadi. Pada pH 5,00 dan 6,00 kelarutan protein meningkat dengan suhu dimana suhu meningkat dari 50 °C sampai 60 °C (pH 5,00) dan dari 50 °C sampai 70 °C (pH 6,00) menunjukkan bahwa tidak ada koagulasi atau agregasi antara molekul protein, mungkin karena di nilai pH b-laktoglobulin adalah dimmer yang dipisahkan dalam monomer pada 50 °C dan hanya di atas 60 °C (pada pH 5.0) atau 70 °C (pada pH 6,0) protein terungkap dan kelompok hidrofobik bereaksi.

Kerusakan Selama Diolah

Susu murni adalah cairan yang berasal dari ambing sapi sehat dan bersih yang diperoleh dengan cara yang benar, yang kandungan alamiahnya tidak dikurangi atau ditambah sesuatu apapun dan belum mendapat perlakuan apapun. Susu segar adalah susu murni yang disebutkan di atas dan tidak mendapat perlakuan apapun kecuali proses pendinginan tanpa mempengaruhi kemurniannya Hadiwiyoto (1994).

Pengaruh yang disebabkan oleh baiknya nilai gizi susu tersebut menjadikan susu sangat mudah mengalami kerusakan yang disebabkan oleh mikroorganisme. Susu adalah yang mengandung sedikit jumlah bakteri, tidak mengandung spora mikroba patogen, bersih yaitu tidak mengandung debu atau kotoran lainnya dan mempunyai cita rasa (flavour) yang baik, dan tidak dipalsukan (Hadiwiyoto, 1994)

Proses utama yang banyak dipakai dalam pengolahan susu adalah metode thermal. Metode thermal yaitu suatu proses pengolahan pangan konvensional dengan menggunakan pemanasan antara 600C-1000C seperti pasteurisasi. Proses ini digunakan untuk memperpanjang umur simpan dengan menginaktifkan enzim dan menekan jumlah mikroorganisme di dalam susu. Namun seiring dengan perkembangan teknologi cara ini dipandang sudah tidak efektif lagi karena mempunyai dampak negatif seperti, melarutnya mineral, kalsium dan fosfor, kerusakan whey protein, rendahnya daya tegang curd, berkurangnya kadar CO2, berubahnya keseimbangan ion hidrogen dan berkurangnya pembentukan krim (Buckle, et al. 1987).

Penyimpanan susu pasteurisasi harus dilakukan pada suhu rendah yaitu antara 2-8°C. Masa simpan susu pasteurisasi rata-rata adalah 7 hari. Penyimpanan pada suhu dibawah 0°C tidak direkomendasikan karena dapat menimbulkan kerusakan protein susu. Penyimpanan pada suhu ruang maksimal adalah 4 jam dan segera dikonsumsi. Penyimpanan susu pada 2°C dapat memperpanjang masa simpan hingga 12 hari namun jika suhu penyimpanan susu pada kisaran 8°C, maka masa simpan susu hanya berkisar 5 hari (Buckle, et al. 1987).

Proses pengolahan susu cair dengan teknik sterilisasi atau pengolahan menjadi susu bubuk sangat berpengaruh terhadap mutu sensoris dan mutu gizinya terutama vitamin dan protein. Pengolahan susu cair segar menjadi susu UHT sangat sedikit pengaruhnya terhadap kerusakan protein. Di lain pihak kerusakan protein sebesar 30 persen terjadi pada pengolahan susu cair menjadi susu bubuk. Kerusakan protein pada pengolahan susu dapat berupa terbentuknya pigmen coklat (melanoidin) akibat reaksi Mallard (Ressang, 1988).

Reaksi Mallard adalah reaksi pencoklatan non enzimatik yang terjadi antara gula dan protein susu akibat proses pemanasan yang berlangsung dalam waktu yang cukup lama seperti pada proses pembuatan susu bubuk. Reaksi pencoklatan tersebut menyebabkan menurunnya daya cerna protein (Ressang, 1988).

Reaksi pencoklatan (Mallard) dan rasemisasi asam amino telah berdampak kepada menurunnya ketersedian lisin pada produk-produk olahan susu. Penurunan ketersediaan lisin pada susu UHT relative kecil yaitu hanya mencapai 0-2 persen. Pada susu bubuk penurunannya dapat mencapai 5-10 persen (Ressang, 1988).

DAFTAR PUSTAKA

Buckle, K.A., R. A. Edwards, G.H. Fleet and M. Wootton., 1987. Ilmu Pangan. Penerbit UnivErsitas Indoneesia. Jakarta.

Fox, P . F., 1989. Developments in Dairy Chemistry – 4. New York: Elsevier Science Publishers Ltda.

Hadiwiyoto,S. 1994. Teori Dan Prosedur Pengujian Susu Segar Dan Hasil Olahannya. Liberty. Yogyakarta.

Ressang, A.A. dan A.M. Nasution. 1988. Pedoman Ilmu Kesehatan Susu. (Milk Hygiene). IPB. Bogor.

Morr, C. V.; German, B.; Kinsella, J. E.; Regenstein, J. M.; Buren, J. P .; Kilara, A.; Lewia, B. A.; Mangino, M. E. A., 1985 Collaborative Study to Develop a Standardised Food Protein Solubility Procedure. Journal of Food Science, v.50, n.6, p.1715-1718.

Nakai, S.; Chan, L., 1985. Structure Modification and Functionality of Whey Proteins: Quantitative Structure-Activity Relationship Approach. Journal of Dairy Science, v.68, n.10, p.2763-2772.

Vojdani, F. Solubility. , 1996. In Methods of Testing Protein Functionality. London: Blackie Academic & Professional. Cap.1, p. 11-60.

Wit, J. N., 1989. Functional Properties of Whey Proteins. In: Developments in Dairy Chemistry-4, cap. 8, p.285-321, London: Elsevier Applied Science.

Wong, W. S.; Camirond, W. M.; Pavlath, A. E., 1996. Structures and functionality of milk proteins. Critical Reviews in Food Science and Nutrition, v.36, n.8, p. 807-844.


SIFAT DAN KARAKTERISTIK KARAGENAN

KARAGENAN

 Karagenan merupakan polisakarida yang diekstraksi dari rumput laut merah dari jenis Chondrus, Euchema, Gigartina, Hypnea, Iradea dan Phyllophora. Karagenan dibedakan dengan agar berdasarkan kandungan sulfatnya (Hall 2009). Jumlah dan posisi sulfat membedakan macam-macam polisakarida Rhodophyceae, polisakarida tersebut harus mengandung 20% sulfat berdasarkan berat kering untuk diklasifikasikan sebagai karagenan (FAO 2007).

Karagenan bukan biopolimer tunggal, tetapi campuran dari galaktan-galaktan linear yang mengandung sulfat dan larut dalam air. Galaktan-galaktan tersebut terhubung oleh 3-β-D-galaktopiranosa (G-units) dan 4-α-D-galktopiranosa (D-units) atau 4-3,6-anhidrogalaktosa (DA-units), membentuk unit pengulangan disakarida dari karagenan. Galaktan yang mengandung sulfat diklasifikasikan berdasarkan adanya 3,6-anhidrogalaktosa serta posisi dan jumlah golongan sulfat pada strukturnya (Imeson 2010). Kappa karagenan tersusun dari α(1,3)-D-galaktosa-4-sulfat dan β(1,4)-3,6-anhidro-D-galaktosa. Karagenan juga mengandung D-galaktosa-2-sulfat ester (Hall 2009).

Karagenan komersil memiliki kandungan sulfat 22-38% (w/w). Karagenan dijual dalam bentuk bubuk, warnanya bervariasi dari putih sampai kecoklatan bergantung dari bahan mentah dan proses yang digunakan. Karagenan yang umumnya ada di pasaran terdiri atas 2 tipe, yaitu refined karagenan dan semirefined karagenan. Semirefined karagenan dibuat dari spesies rumput laut Euchema yang banyak terdapat di Indonesia dan Filipina. Semirefined karagenan mengandung lebih banyak bahan yang tidak larut asam (8-15%) dibandingkan refined karagenan (2%) (Fahmitasari 2004).

Sifat Dasar Karagenan

Sifat dasar karagenan terdiri dari tiga tipe karagenan yaitu kappa, iota dan lambda karagenan. Tipe karagenan yang paling banyak dalam aplikasi pangan adalah kappa karagenan. Sifat-sifat karagenan meliputi kelarutan, viskositas, pembentukan gel dan stabilitas pH.

Kelarutan

Kelarutan karagenan dalam air dipengaruhi oleh beberapa faktor diantaranya tipe karagenan, temperatur, pH, kehadiran jenis ion tandingan dan zat-zat terlarut lainnya. Gugus hidroksil dan sulfat pada karagenan bersifat hidrofilik sedangkan gugus 3,6-anhidro-D-galaktosa lebih hidrofobik. Lambda karagenan mudah larut pada semua kondisi karena tidak memiliki unit 3,6-anhidro-D-galaktosa dan mengandung gugus sulfat yang tinggi. Karagenan jenis iota bersifat lebih hidrofilik karena adanya gugus 2-sulfat yang dapat menetralkan 3,6-anhidro-D-galaktosa yang bersifat kurang hidrofilik. Karagenan jenis kappa kurang hidrofilik karena lebih banyak memiliki gugus 3,6-anhidro-D-galaktosa (Imeson 2010).

Karakteristik daya larut karagenan juga dipengaruhi oleh bentuk garam dari gugus ester sulfatnya. Jenis sodium umumnya lebih mudah larut, sementara jenis potasium lebih sukar larut. Karagenan memiliki kemampuan membentuk gel pada saat larutan panas menjadi dingin. Proses pembentukan gel bersifat thermoreversible, artinya gel dapat mencair pada saat pemanasan dan membentuk gel kembali pada saat pendinginan (Gliksman 1983; Imeson 2000).

Stabilitas pH

Karagenan dalam larutan memiliki stabilitas maksimum pada pH 9 dan akan terhidrolisis pada pH dibawah 3,5. Kondisi proses produksi karagenan dapat dipertahankan pada pH 6 atau lebih. Hidrolisis asam akan terjadi jika karagenan berada dalam bentuk larutan, hidrolisis akan meningkat sesuai dengan peningkatan suhu. Larutan karagenan akan menurun viskositasnya jika pHnya diturunkan dibawah 4,3 (Imeson 2000). Kappa dan iota karagenan dapat digunakan sebagai pembentuk gel pada pH rendah, tetapi tidak mudah terhidrolisis sehingga tidak dapat digunakan dalam pengolahan pangan. Penurunan pH menyebabkan terjadinya hidrolisis dari ikatan glikosidik yang mengakibatkan kehilangan viskositas. Hidrolisis dipengaruhi oleh pH, temperatur dan waktu.

Viskositas

Viskositas adalah daya aliran molekul dalam sistem larutan. Viskositas suatu hidrokoloid dipengaruhi oleh beberapa faktor yaitu konsentrasi karagenan, temperatur, jenis karagenan, berat molekul dan adanya molekul-molekul lain. Jika konsentrasi karagenan meningkat maka viskositasnya akan meningkat secara logaritmik. Viskositas larutan karagenan terutama disebabkan oleh sifat karagenan sebagai polielektrolit. Gaya tolakan (repulsion) antar muatan-muatan negatif sepanjang rantai polimer yaitu gugus sulfat, mengakibatkan rantai molekul menegang. Karena sifat hidrofiliknya, polimer tersebut dikelilingi oleh molekul-molekul air yang termobilisasi, sehingga menyebabkan larutan karagenan bersifat kental.

Adanya garam-garam yang terlarut dalam karagenan akan menurunkan muatan bersih sepanjang rantai polimer. Penurunan muatan ini menyebabkan penurunan gaya tolakan (repulsion) antar gugus-gugus sulfat, sehingga sifat hidrofilik polimer semakin lemah dan menyebabkan viskositas larutan menurun. Viskositas larutan karagenan akan menurun seiring dengan peningkatan suhu sehingga terjadi depolimerisasi yang kemudian dilanjutkan dengan degradasi karagenan.

Pembentukan gel

Menurut Fardiaz (1989), pembentukan gel adalah suatu fenomena penggabungan atau pengikatan silang rantai-rantai polimer sehingga terbentuk suatu jala tiga dimensi bersambungan. Selanjutnya jala ini menangkap atau mengimobilisasikan air didalamnya dan membentuk struktur yang kuat dan kaku. Sifat pembentukan gel ini beragam dari satu jenis hidrokoloid ke jenis lain, tergantung pada jenisnya. Gel mempunyai sifat seperti padatan, khususnya sifat elastis dan kekakuan.

Kappa-karagenan dan iota-karagenan merupakan fraksi yang mampu membentuk gel dalam air. Karagenan memiliki kemampuan membentuk gel pada saat larutan panas menjadi dingin. Proses pembentukan gel bersifat thermoreversible, artinya gel dapat mencair pada saat pemanasan dan membentuk gel kembali pada saat pendinginan (Gliksman 1983; Imeson 2000).

Proses pemanasan dengan suhu yang lebih tinggi dari suhu pembentukan gel akan mengakibatkan polimer karagenan dalam larutan menjadi random coil (acak). Bila suhu diturunkan, maka polimer akan membentuk struktur double helix (pilinan ganda) dan apabila penurunan suhu terus dilanjutkan polimer-polimer ini akan terikat silang secara kuat dan dengan makin bertambahnya bentuk heliks akan terbentuk agregat yang bertanggung jawab terhadap terbentuknya gel yang kuat. Jika diteruskan, ada kemungkinan proses pembentukan agregat terus terjadi dan gel akan mengerut sambil melepaskan air. Proses terakhir ini disebut sineresis (Fardiaz 1989).

Kemampuan pembentukan gel pada kappa dan iota karagenan terjadi pada saat larutan panas yang dibiarkan menjadi dingin karena mengandung gugus 3,6 -anhidrogalaktosa. Adanya perbedaan jumlah, tipe dan posisi gugus sulfat akan mempengaruhi proses pembentukan gel. Kappa karagenan dan iota karagenan akan membentuk gel hanya dengan adanya kation-kation tertentu seperti K+, Rb+ dan Cs+. Potensi membentuk gel dan viskositas larutan karagenan akan menurun dengan menurunnya pH, karena ion H+ membantu proses hidrolisis ikatan glikosidik pada molekul karagenan (Angka dan Suhartono 2000). Konsistensi gel dipengaruhi beberapa faktor antara lain: jenis dan tipe karagenan, konsistensi, adanya ion-ion serta pelarut yang menghambat pembentukan hidrokoloid.

Sifat fungsional karagenan

Karagenan berperan sangat penting sebagai stabilisator (pengatur keseimbangan), thickener (bahan pengentalan), pembentuk gel, pengemulsi dan lain-lain (Imeson 2010). Sifat ini banyak dimanfaatkan dalam industri makanan, obat-obatan, kosmetik, tekstil, cat, pasta gigi dan industri lainnya.

Penambahan karagenan (0,01-0,05%) pada es krim berfungsi sebagai stabilisator yang sangat baik. Penambahan karagenan dapat mencegah pengendapan coklat pada susu coklat dan pemisahan es krim serta meningkatkan kekentalan kekentalan lemak dan pengendapan kalsium (Winarno 1996). Karagenan dapat berfungsi sebagai pengikat, melindungi koloid, penghambat sineresis dan flocculating agent. Karagenan termasuk senyawa hidrokoloid yang banyak digunakan untuk meningkatkan sifat-sifat tektur dan kestabilan suatu cairan produk pangan (Distantina et al. 2009).


BAKING SODA

Bubuk ragi adalah agensia peragi yang dihasilkan oleh pencampuran suatu bahan yang beraksi asam dengan natrium bikarbonat dengan pati atau tepung, campuran tersebut membebaskan karbondioksida tidak kurang 12%. Dari 12% karbondioksida yang dipenuhi dengan memasukkan 23% natrium bikarbonat. Tetapi, karena untuk mengganti gas-gas yang hilang dalam penyimpanan dan kondisi lain yang menurunkan hasil gas yang dibebaskan, memerlukan formula yang mengandung kurang lebih 26-30% soda. Bubuk ragi terdiri dari asam peragi dan bahan pengisi misalnya pati dan tepung serta senyawa lain seperti kalsium laktat atau kalsium silikat hidrat yang memiliki pengaruh terhadap terbentuknya karbondioksida dari suatu sistem. Terdapat bukti bahwa pengencer tidak sepenuhnya bermanfaat tetapi mampu untuk menghambat reaksi komponen peragi, karena adanya penyerapan air selama penyimpanan untuk mengubah sedikit kecepatan selama pencampuran (Desrosier, 1988).

Jadi fungsi dari baking soda yakni membuat pati mengembang. Terutama digunakan untuk menyerap kelembaban, dan memperpanjang umur simpan (Wikipedia, 2011).

Soda adalah alkali, dan bila digunakan dengan jumlah asam penetral yang tepat, maka CO2 terbentuk, meragikan adonan. Bila digunakan tanpa penetralan asam-asam bahan makanan, maka bahan tersebut akan melemahkan protein.

Penambahan bahan selain pati yang suka air dapat menyulitkan pemasakan pati, sehingga kematangan adonan pati mempengaruhi hasil akhir dan akibatnya mempengaruhi kerenyahan. Oleh karena itu diperlukan bahan yang dapat meningkatkan daya kembang dan kerenyahan produk, di antaranya adalah menambahkan NaHCO3 (Haryadi, 1989).

Bahan pengembang dapat meningkatkan kemampuan pati dalam menyerap air. NaHCO3 sendiri dapat mengikat air membentuk NaOH dan H2CO3 yang nantinya berperan pada pengembangan dengan menghasilkan gas CO2 dan uap air karena adanya pemanasan yakni pengeringan dan penggorengan.


PEMBUATAN SUSU KEDELAI TIDAK LANGU

Susu kedelai merupakan salah satu hasil pengolahan dari komoditas kedelai yang sangat diminati oleh masyarakat.  Selain bergizi tinggi, susu kedelai dan kembang tahu juga lezat untuk dinikmati merupakan teknologi yang bersumber dari Badan Litbang pertanian dan LIPI Subang. Metoda yang diterapkan pada verifikasi tersebut adalah metoda dengan perendaman dalam baking soda selama 15 menit dan metoda perendaman dalam air biasa selama semalam.

inovasi teknologi yang digunakan :

a. Persiapan Bahan Baku  : kedelai yang bersih dan sehat serta masih segar/baru.

b. Metoda Perendaman Dalam Baking Soda selama 15 menit

      Bahan :      –     Kedelai 1 kg

-          Gula pasir 7 ons

-          Baking Soda 0.25-0.5%

-          Garam secukupnya

-          Air 10 liter

-          Tepung agar 1%

      Alat    :       –    Blender

-          Panci

-          Sendok Sayur

-          Tirisan

-          Kain Saring

-          Corong

-          Botol

      Cara Kerja:

  1. Bersihkan kedelai dari kotoran yang ada
  2. Rendam dalam larutan baking soda selama 15 menit dengan perbandingan larutan perendam : Kedelai = 3 : 1
  3. Didihkan rendaman kedelai, tiriskan dan buang kulitnya serta dibilas bersih.
  4. Giling kedelai dengan ditambah air mendidih sedikit demi sedikit
  5. Bubur kedelai ditambah dengan air mendidih sehingga jumlah air secara keseluruhan 10 liter (termasuk tambahan air sewaktu penggilingan)
  6. Tambahkan gula dan diaduk sampai larut
  7. Bubur kedelai disaring (filtratnya disebut susu kedelai mentah)
  8. Dipanaskan kembali sampai mendidih, tambahkan tepung agar 1% sambil diaduk. Api dikecilkan dan dibiarkan dalam api kecil selama 20 menit, angkat.
  9. Susu siap dikonsumsi.

c. Metoda Perendaman Semalam Dalam Air Biasa

      Bahan :       

 –     Kedelai 1 kg                     

-          Gula pasir 5-7 ons

-          Garam secukupnya

-          Air 8 liter

-          Tepung agar 1%

      Alat    :         

 –    Blender

-          Panci

-          Sendok Sayur

-          Tirisan

-          Kain Saring

-          Corong

-          Botol

      Cara Kerja:

  1. Bersihkan kedelai dari kotoran yang ada
  2. Cuci kedelai dan rebus 15 menit
  3. Rendam dengan air rebusan 1 malam
  4. Tiriskan, kupas kulit dan cuci bersih
  5. Giling kedelai dengan dicampur sedikit demi sedikit air panas
  6. Tambahkan air panas 8 liter (termasuk untuk menggiling kedelai) dan tambahkan gula
  7. Panaskan bubur kedelai tersebut selama 15 menit pada suhu 80°C sambil ditambahkan tepung agar 1 % dan diaduk
  8. Bubur kedelai disaring
  9. Panaskan kembali 15 menit (suhu 80°C) sambil ditambahkan tepung agar 1 % diaduk
  10. 10. Susu siap dibotolkan atau dikonsumsi.

Hasil

Pada kegiatan optimasi teknologi dilakukan pengamatan terhadap mutu fisik susu kedelai (bau, rasa, warna dan ada tidaknya endapan). Untuk lebih jelasnya mutu fisik susu kedelai dapat dilihat Tabel 1. Dari Tabel 1.  dapat dilihat bahwa mutu fisik susu kedelai pada optimasi teknologi memperlihatkan hasil yang baik karena sudah memenuhi standar mutu SNI 01 – 3830 -1995.

Tabel 1. Mutu fisik  susu  kedelai pada metoda perendaman dengan  baking soda  dan

              Perendaman semalam dengan air biasa.

  No Perlakuan Uji organoleptik
Bau dan rasa Warna Endapan
1. Perendaman dalam larutan  baking soda Normal  tidak langu

Rasa enak

Putih cerah Tidak ada  endapan
2. Perendaman semalam dengan air biasa Normal  tidak langu

Rasa enak

Putih agak kusam Tidak ada  endapan

Disamping mutu fisik juga dilakukan pengamatan terhadap kesukaan konsumen terhadap rasa susu kedelai dengan uji organoleptik. Dari 15 orang responden yang diuji semuanya menyatakan lebih suka terhadap rasa susu kedelai yang dibuat dengan metoda perendaman dalam larutan baking soda dibandingkan dengan metoda perendaman semalam, karena mempunyai rasa enak, warna putih cerah dan proses pembuatannya lebih cepat (perendaman hanya 15 menit).


BAGAIMANA ES KRIM TERBENTUK (SECARA FISIK)

Pembuatan es krim sebenarnya sederhana saja, yakni mencampurkan bahan-bahan dan kemudian mendinginkannya. Air murni pada tekanan 1 atmosfer akan membeku pada suhu 0ºC. Namun, bila ke dalam air dilarutkan zat lain, titik beku air akan menurun. Jadi, untuk membekukan adonan es krim pun memerlukan suhu di bawah 0ºC. Misalkan adonan es krim dimasukkan dalam wadah logam, kemudian di ruang antara ember kayu dan wadah logam dimasukkan es.

Awalnya, suhu es itu akan kurang dari 0ºC (coba cek hal ini dengan mengukur suhu es yang keluar dari lemari pendingin). Namun, permukaan es yang berkontak langsung dengan udara akan segera naik suhunya mencapai 0ºC dan sebagiannya akan mencair. Suhu campuran es dan air tadi akan tetap 0ºC selama esnya belum semuanya mencair. Seperti disebut di atas, jelas campuran es krim tidak membeku pada suhu 0ºC akibat sifat koligatif penurunan titik beku.

Bila ditaburkan sedikit garam ke campuran es dan air tadi, kita mendapatkan hal yang berbeda. Air lelehan es dengan segera akan melarutkan garam yang kita taburkan. Dengan demikian, kristal es akan terapung di larutan garam. Karena larutan garam akan mempunyai titik beku yang lebih rendah dari 0ºC, es akan turun suhunya sampai titik beku air garam tercapai. Dengan kata lain, campuran es krim tadi dikelilingi oleh larutan garam yang temperaturnya lebih rendah dari 0ºC sehingga adonan es krim itu akan dapat membeku.

Tetapi, kalau campuran itu hanya dibiarkan saja mendingin tidak akan dihasilkan es krim, melainkan gumpalan padat dan rapat berisi kristal-kristal es yang tidak akan enak kalau dimakan. Bila diinginkan es krim yang enak di mulut, selama proses pembekuan tadi adonan harus diguncang-guncang. Pengocokan atau pengadukan campuran selama proses pembekuan merupakan kunci dalam pembuatan es krim yang baik.


PEMBUATAN SOSIS “METODE FERMENTASI”

PEMBUATAN SOSIS “METODE FERMENTASI”

Sosis atau sausage berasal dari bahasa Latin yaitu salsus yang berarti menggiling dengan garam. Sesuai dengan namanya, sosis merupakan produk olahan daging yang digiling. Pada zaman dahulu, sosis dibuat dengan cara sederhana yaitu daging digiling, dihaluskan, dicampur bumbu kemudian diaduk dengan lemak hingga tercampur rata dan dimasukkan ke dalam selongsong. Selongsong yang dipakai pun masih alami yaitu usus hewan seperti usus sapi atau kambing.

Berdasarkan proses pengolahannya, sosis secara umum dibagi menjadi 5 yaitu:

  • Sosis segar, yaitu jenis sosis yang dibuat dari daging segar yang tidak dimasak dan tidak dikyuring, contoh polish sausage
  • Sosis yang diasap dan dimasak, yaitu sosis yang mempunyai karakteristik sama dengan sosis segar, namun sosis ini diselesaikan dengan pengasapan untuk memberikan flavor dan warna yang berbeda, serta harus dimasak dahulu sebelum dikonsumsi, contoh frankfuter, bologna, knackwurst
  • Sosis masak, yaitu sosis yang dipersiapkan dari satu atau lebih macam-macam daging unggas, contoh beer salami, liver sausage
  • Sosis fermentasi, yaitu sosis yang diproduksi melalui proses fermentasi dengan persiapan paling rumit diantara semua jenis sosis, contoh summer sausage, cervelat, dry salami, pepperoni
  • Sosis daging spesial, yaitu sosis yang dibuat dari daging cacah yang biasanya dimasak atau cenderung dibakar daripada diasap, contoh meat loaves.

Selain kelima macam sosis di atas, sosis juga dapat dibedakan menjadi menjadi 3, yaitu:

  • Sosis mentah (rohwurst), dibuat dari daging sapi mentah yang digiling (tanpa proses pemasakan), kemudian ditambahkan kultur bakteri lactobacillus sehingga terjadi proses fermentasi
  • Sosis matang (brunchwurst), dibuat dari daging mentah digiling, diolah, lalu dimasak. Sosis jenis Brunchwurst merupakan jenis sosis yang paling banyak beredar di Indonesia
  • Sosis masak (kochwurst), biasanya dibuat  dari daging tetelan atau hati yang direbus, diolah, dan dimasak lagi.

Menurut Standar Nasional Indonesia (SNI 01-3820-1995), sosis yang baik harus mengandung protein minimal 13%, lemak maksimal 25% dan karbohidrat maksimal 8%. Jika standar ini terpenuhi, maka dapat dikatakan bahwa sosis merupakan makanan sumber protein. Hanya saja, karena kadar lemak dan kolesterol sosis yang cukup tinggi, sosis sebaiknya tidak dijadikan menu rutin bagi anak-anak guna mencegah masalah obesitas dan penyakit-penyakit yang mengikutinya dikemudian hari.

Sosis fermentasi merupakan produk sosis yang berasal dari hasil kerja bakteri pembentuk asam laktat, baik yang terdapat dalam daging secara alami, maupun bakteri starter yang ditambahkan. Sosis fermentasi dapat dibagi menjadi 2 jenis, yaitu sosis kering (dry sausage) dan sosis semi kering (semi dry sausage). Kultur starter yang digunakan pada pembuatan sosis semi kering adalah Pediococcus acidilactici, sedangkan pada sosis kering adalah Lactobacillus atau Pediococcus atau campuran Micrococcus dan Lactobacillus.

Salami merupakan salah satu contoh sosis fermentasi (dry sausage) yang mempunyai karakteristik khusus dengan melibatkan bakteri asam laktat, dengan waktu fermentasi selama 3 bulan, biasanya dikemas dengan diameter yang agak besar dan bentuk adonannya kasar, serta mempunyai flavor tertentu. Salami adalah sosis tradisional ala Italia. Salami biasanya terbuat dari daging cincang, lemak hewan, ternak dan rempah, serta bahan-bahan lain yang ditambahkan bakteri asam laktat dan melalui proses pengasapan. Jenis salami
yang terdapat di pasar antara lain, Lola, B. C. Salami, milano, dan lain-lain.

 

Proses Pembuatan Sosis Fermentasi

Bahan utama yang digunakan pada pembuatan sosis fermentasi yaitu daging. Selain itu, terdapat bahan-bahan khusus yang ditambahkan antara lain garam, nitrit, gula, rempah-rempah (merica, bawang putih, lada), dan starter. Pada pembuatan sosis fermentasi digunakan casing atau selongsong yang berfungsi sebagai cetakan.

  1. Daging

Daging merupakan sumber protein berkualitas tinggi, mengandung vitamin B dan mineral, khususnya besi. Secara umum dapat dikatakan bahwa daging terdiri dari air dan bahan- bahan padat. Bahan padat daging terdiri dari bahan – bahan yang mengandung nitrogen, mineral, garam dan abu. Kurang lebih 20% dari semua bahan padat dalam daging adalah protein. Bagian potongan daging yang dapat digunakan sebagai bahan baku sosis adalah potongan daging seperti beef short ribs, chuck, dan round pork shoulder. Karakteristik daging yang digunakan adalah yang memiliki daya mengikat air.

  1. Garam

Garam yang digunakan dalam pembuatan produk sosis adalah jenis garam dapur (NaCl), garam tidak hanya berfungsi sebagai pembentuk flavor, namun juga berpengaruh dalam pembentukan karakteristik fisik dan adonan. Garam mempunyai peran yang cukup menentukan yaitu memberikan kelezatan produk, mempertahankan flavor dari bahan-bahan yang digunakan, serta berfungsi sebagai pengikat adonan sehingga mengurangi kelengketan. Selain itu, garam juga dapat membantu mencegah berkembangnya mikroba yang ada dalam adonan. Komposisi garam dalam sosis berkisar 1-3%.

  1. Nitrit

Nitrat merupakan sumber nitrit. Nitrat akan diubah menjadi nitrit kemudian diubah menjadi NO melalui reduksi. Reduksi terjaid karena adanya aktivitas mikrobia. Fungsi dari nitrit adalah menstabilkan warna dari jaringan untuk mengkontribusi karakter dari daging curing untuk menghambat pertumbuhan dari racun makanan dan mikroorganisme pembusuk, menghambat ketengikan, memberi flavor spesifik, efektif mencengah pertumbuhan Clostridium botulinum. Jumlah nitrat/nitrit maksimal 200 ppm pada produk akhir.

  1. Gula

Penambahan gula terutama sukrosa dan glukosa selain sebagai substrat fermentasi untuk pertumbuhan bakteri asam laktat, juga berperan dalam pembentukan cita rasa dan tekstur sosis fermentasi. Gula sebagai bahan pengawet berfungsi sebagai nutrisi untuk pertumbuhan bakteri asam laktat yang akan memulai proses fermentasi. Gula yang ditambahkan akan difermentasi menjadi asam laktat oleh bakteri asam laktat dan menghasilkan flavor yang tajam. Gula yang ditambahkan secara tepat dapat mengaktifkan proses fermentasi dan mempercepat penurunan pH.

  1. Rempah-Rempah

Biji merica digunakan sebagai bumbu pemberi rasa dan aroma, karena rempah-rempah dapat menyamarkan makanan dengan penutup rasa makanan yang kurang enak. Selain itu juga berfungsi sebagai pengawet. Bawang putih merupakan bumbu yang sangat khas dalam pembuatan sosis fermentasi. Bawang putih mengandung antioksidan yang kuat dan dapat memperpanjang daya tahan sosis. Bawang putih dapat dipakai sebagai pengawet karena bersifat bakteriostatik. Lada biasanya digunakan pada semua tipe sosis fermentasi sebanyak 0,2-0,3% dan berfungsi untuk menghambat pertumbuhan Listeria monocytogenes.

  1. Kultur Starter

Mikroorganisme yang digunakan sebagai kultur starter pada umumnya dibagi menjadi dua grup, yaitu kelompok bakteri asam laktat, peran utamanya adalah bertanggung jawab terhadap proses asidifikasi dan kelompok mikroorganisme pembentuk flavor sering mampu mereduksi nitrat. Kelompok pertama terdiri atas Lactobacillus dan Pediococcus, yang kedua adalah kelompok Microccaceae, kapang.

Bakteri asam laktat yang digunakan sebagai kultur starter harus dapat memenuhi kriteria yaitu: 1) mampu bersaing dengan mikroorganisme lain, 2) memproduksi asam laktat secara cepat, 3) mampu tumbuh pada konsentrasi garam kurang dari 6%, 4) mampu bereaksi dengan  dengan konsentrasi kurang dari 100 mg/kg, 5) mampu tumbuh pada suhu antara 15-40˚C, 6) termasuk bakteri homofermentatif, 7) tidak menghasilkan peroksida dalam jumlah besar, 8) dapat mereduksi nitrit dan nitrat, 9) dapat meningkatkan flavour produk akhir, 10) tidak memproduksi senyawa asam amino, 11) dapat membunuh bakteri pembusuk dan patogen, dan 12) bersifat sinergis dengan senyawa starter lain.

Starter bakteri asam laktat yang banyak digunakan biasanya dari golongan Lactobacillus. Penggunaan kultur starter dalam pembuatan sosis fermentasi dilakukan untuk meningkatkan mutu produk produk dengan meningkatakan keamanan produk, memperpanjang umur simpan, dan menghasilkan produk yang konsisten.

Lactobacillus plantarum merupakan bakteri berbentuk batang, umumnya berukuran 0,7-1,0 sampai 3,0-8,0 mikron, tunggal atau dalam rantai-rantai pendek, dengan ujung yang melingkar. Organisme ini cenderung berbentuk batang pendek dalam kondisi pertumbuhan yang sesuai dan akan cenderung lebih panjang di bawah kondisi yang tidak menguntungkan. Bakteri ini termasuk homofermentatif dengan suhu minimum 10°C, maksimum 40°C dan optimum 30°C. Lactobacillus plantarum mampu memproduksi H2O2 dalam jumlah yang tinggi dan berfungsi sebagai antibakteri yang dapat menyebabkan adanya daya hambat terhadap pertumbuhan mikroorganisme lain.

  1. Selongsong

Selongsong adalah bahan pengemas sosis yang umumnya berbentuk silindris. Selongsong sosis dapat berfungsi sebagai cetakan selama pengolahan, pembungkus selama penanganan dan pengangkutan serta sebagai media display selama diperdagangkan. Penggunaan casing dalam pembuatan sosis bertujuan untuk membentuk dan menjaga stabilitas sosis serta melindungi dari kerusakan kimia seperti oksidasi, mikroba, atau kerusakan fisik seperti ketengikan.

Terdapat 5 jenis casing yang sering digunakan dalam pembuatan sosis yaitu alami, kolagen, selulosa, plastic, serta logam. Casing alami biasanya terbuat dari usus alami hewan, casing ini mempunyai keuntungan dapat dimakan, bergizi tinggi dan melekat pada produk, sedangkan kerugian dari casing ini adalah produk ini tidak awet. Casing kolagen biasanya berbahan baku dari kulit hewan besar, keuntungan dari jenis casing ini dapat diwarnai, bisa dimakan, dan melekat pada produk. Casing selulosa biasanya berbahan baku pulp. Keuntungan dari casing selulosa adalah dapat dicetak atau diwarnai dan murah. Kekurangan dari casing ini adalah sangat keras dan dianjurkan untuk tidak dimakan.

Proses pembuatan sosis fermentasi meliputi tahapan persiapan, chilling/ freezing, pemberian bumbu dan pencampuran, filling/ pengisian, fermentasi, pengasapan aging/ drying, dan penyimpanan.

  1. Persiapan

Pada tahap ini, dilakukan pemilihan daging yang baik kemudian dipotong-potong menjadi bagian yang lebih kecil. Daging tersebut kemudian dicincang menjadi daging yang lebih halus. Dalam tahap ini harus dilakukan proses penanganan yang tepat agar daging tidak mengalami kontaminasi silang.

  1. Chilling/ Freezing

Pertumbuhan mikroorganisme dalam pangan dapat dicegah dengan cara penurunan suhu. Terdapat dua macam pengawetan dengan suhu rendah, yaitu pendinginan cara chilling dan deep-feezing (pembekuan pada suhu sangat rendah).

Pada pendinginan cara chilling, pangan ditempatkan pada suhu diatas titik beku air (diatas 0°C). Suhu di dalam alat pendingin rumah tangga adalah dalam kisaran 0-5°C. Pertumbuhan hampir semua mikroorganisme diperlambat dan beberapa diantaranya dapat mengalami kematian. Namun beberapa mikroorganisme tetap tumbuh lambat pada suhu tersebut dan spora bakteri tetap bertahan hidup.

Pada deep-freezing, pangan disimpan pada suhu -18°C atau lebih rendah lagi. Freezing tidak dapat mensterilkan makanan atau membunuh mikroorganisme pembusuk yang menyebabkan bahan atau produk rusak, melainkan hanya mampu menginaktifkan kerja dari enzim bakteri pembusuk, sehingga dapat memperlambat kerja dari mikroba pembusuk tersebut.

  1. Pemberian Bumbu dan Pencampuran

Bumbu-bumbu yang digunakan dalam pembuatan sosis adalah lada, pala ,bawang putih, gula dan garam. Jumlah dan variasi bumbu yang digunakan tergantung selera, daerah dan aroma yang dikehendaki. Setelah daging dicincang halus, bumbu-bumbu ditambahkan pada adonan daging cincang kemudian dicampur hingga merata. Sluri dibuat dari bumbu-bumbu dan garam menggunakan dua gelas air lalu dicampur merata. Penambahan air bertujuan untuk memecah curing agents, memfasilitasi proses pencampuran dan memberikan karakteristik tekstur dan rasa pada produk sosis.

  1. Filling/ Pengisian

Stuffing merupakan tahap pengisian adonan sosis ke dalam selongsong. Pengisisan adonan sosis ke dalam selongsong tergantung tipe sosis, ukuran kemudahan proses, penyimpanan serta permintaan konsumen. Pemasukan adonan sosis ke dalam casing menggunakan alat khusus (disebut stuffer) yang bertujuan membentuk dan mempertahankan kestabilan sosis.

  1. Fermentasi

Tahapan ini merupakan tahap peningkatan suhu sosis yang memungkinkan bakteri alami tumbuh dan bereaksi dengan daging. Fermentasi merupakan tahapan penting pada proses pembuatan sosis dan suhu yang tepat juga memainkan peran yang penting. Semakin tinggi suhu, maka semakin tinggi kecepatan pertumbuhan bakteri. Suhu pertumbuhan yang terbaik adalah suhu tubuh kita (36,6°C).

  1. Pengasapan

    Pengasapan dilakukan pada suhu 70°C selama 30 menit, asap diusahakan menempel dan masuk ke dalam casing sehingga sosis berflavor asap. Pengasapan adalah suau cara pengawetan bahan makanan terutama pada daging dan ikan. Pengasapan dapat memberikan cita rasa khas, mengawetkan, dan memberikan warna yang khas.

    1. Aging/ Drying

    Pengeringan merupakan suatu metode untuk mengurangi/ mengeluarkan sebagian air dari sosis dengan cara menguapkan air tersebut dengan menggunakan energi panas. Biasanya kandungan air sosis dikurangi sampai batas agar mikroba tidak dapat tumbuh didalamnya. Kadar air berpengaruh terhadap tekstur sosis. Pengeringan dapat menurunkan kandungan air dan menyebabkan pemekatan dari bahan-bahan yang ditinggal seperti karbohidrat, lemak, protein sehingga bahan pangan memiliki kualitas simpan yang lebih baik.

    1. Penyimpanan

    Faktor yang mempengaruhi stabilitas penyimpanan dalam pangan meliputi jenis dan bahan baku yang digunakan, metode dan keefektifan pengolahan, jenis dan keadaan kemasan, perlakuan mekanis yang cukup berat dalam produk yang dikemas dala penyimpanan, dan distribusi dan juga pengaruh yang ditimbulkan oleh suhu dan kelembaban penyimpanan.

    Mekanisme Reaksi Selama Proses Pembuatan Sosis Fermentasi

    Dalam sosis fermentasi terdapat kandungan makromolekul seperti karbohidrat, protein, lemak dan fosfolipid. Karbohidrat akan mengalami metabolisme oleh mikroba sehingga dipecah menjadi asam-asam organik. Enzim yang terdapat pada daging akan memecah protein menjadi molekul yang lebih kecil, yaitu peptida dan asam amino pada reaksi proteolisis. Sedangkan enzim lain yang juga terdapat pada daging akan memecah lemak dan fosfolipid menjadi asam lemak bebas pada reaksi hipolisis.

    Asam-asam organik hasil pemecahan karbohidrat akan mempengaruhi rasa (taste) dari sosis. Asam lemak bebas yang berasal dari reaksi hipolisis (pemecahan lemak dan fosfolipid) akan mempengaruhi aroma (flavor) sosis. Sedangkan peptida dan asam amino hasil pemecahan protein akan mempengaruhi rasa dan aroma sosis.

    Pengendalian Proses Pembuatan Sosis Fermentasi

    Tahapan Proses 

    Sosis Semi Kering 

    Sosis Kering

    Persiapan 

    Suhu daging <7°C; pH <5.8; tidak ada kontaminasi silang

    Chilling/Freezing 

    Suhu daging <2°C

    Pemberian Bumbu dan Pencampuran 

    100-125 mg NaNO2/kg; Pediococcus acidilactici; Gula 0,5-0,8%; Aw 0,95

    50-70 mg NaNO2/kg; Lactobacillus atau Pediococcus atau campuran Micrococcus dan Lactobacillus; Gula 0,3-0,5%; Aw 0,95

    Fermentasi 

    20-25°C; 2-3 hari; pH<5.3 

    18-22°C; 3 hari; pH <5.3

    Aging/Drying 

    <15°C; RH 70-80%; Aw 0.93 

    10-15°C; RH 70-80%; Aw <0.90

    Penyimpanan 

    <15°C 

    <25°C 

    Karakteristik Sosis Fermentasi

    Sosis fermentasi yang telah jadi akan memiliki karakteristik pH yang asam, yaitu 4,8-5,3. Pada sosis kering (dry sausage) akan terjadi penurunan berat sebesar 60-70% dari berat awal setelah dilakukan proses fermentasi, sehingga kadar air akhir dari sosis kering yaitu 25-45% dengan ratio perbandingan antara air dan protein sebesar 2,3 : 1. Sedangkan pada sosis semi kering (semi dry sausage), kadar air pada akhir prosesnya yaitu 55-60% dengan ratio perbandingan antara air dan protein sebesar 3,7 : 1.

    Pertumbuhan kapang, khamir atau bakteri pada permukaan sosis dapat menyebabkan kondisi permukaan berjamur atau berlendir. Hal ini dapat terjadi ketika sosis diperlakukan buruk dan dikeringkan. Kelembaban menjadi meningkat sehingga suhu penyimpanan berubah, terutama dari suhu rendah ke suhu yang lebih tinggi. Permukaan yang berlendir dan berjamur ini adalah akumulasi besar sel mikroba yang dapat menyebabkan perubahan karakteristik pada produk akhir.

    Manfaat Sosis Fermentasi

    Beberapa manfaat yang dapat diperoleh dari pengkonsumsian sosis fermentasi, yaitu:

  • Mempunyai nilai gizi yang lebih tinggi dari nilai gizi bahan asalnya (mikroorganisme bersifat katabolik, memecah senyawa kompleks menjadi senyawa sederhana sehingga mudah dicerna dan mensintesis vitamin kompleks dan faktor-faktor pertumbuhan badan lainnya, sebagai contoh vitamin B12, riboflavin, provitamin A)
  • Meningkatkan kesehatan dengan cara meningkatkan jumlah bakteri baik dalam saluran pencernaan sehingga dapat menghindarkan dari berbagai macam penyakit terutama penyakit yang berhubungan dengan saluran pencernaan

Memiliki daya cerna yang tinggi sehingga mudah diserap dan dicerna oleh tubuh

DAFTAR PUSTAKA

Anonymous. 2009. Sosis. http://www.warintek.ristek.go.id/pangan_kesehatan/pang- an/ipb/Sosis.pdf. Diakses tanggal 6 Mei 2011.

Anonymous. 2011. Pengolahan Pangan dengan Fermentasi. http://www.smallcrab. com/makanan-dan-gizi/878-pengolahan-pangan-dengan-fermentasi. Diakses tanggal 5 Mei 2011.

Anonymous. 2011. Sosis. http://www.eresep.com/29-Sosis.html. Diakses tanggal 6 Mei 2011.

Domowe, Wedliny. 2011. Traditional Fermented Sausages. http://www.wedliny- domowe.com/sausage-types/fermented-sausage/traditional. Diakses tanggal 28 Mei 2011.

Nursiam, I. 2011. Sosis Fermentasi: Salami. http://intannursiam.wordpress.com/2011/ 01/10/sosis-fermentasi-salami/. Diakses tanggal 5 Mei 2011.

Nursirwan, H. 2009. Kualitas Fisik, Kimia dan Organoleptik Salami Kandidat Probiotik Selama Penyimpanan Dingin. http://repository.ipb.ac.id/bitstream/handle/123 456789/36509/D09hnu1.pdf?sequence=1. Diakses tanggal 6 Mei 2011.

Pederson, C. S. 1971. Microbiology of Food Fermentations. The AVI Publishing Company, Inc. Westport, Connecticut.

Soeparno. 1992. Ilmu dan Teknologi Daging. Gadjah Mada University Press. Yogyakarta.

Syamsir, E. 2009. Mengenal Sosis. http://ilmupangan.blogspot.com/2009/05/menge- nal-sosis.html. Diakses tanggal 6 Mei 2011.

Umilatifah. 2011. Pengolahan Sosis. http://umilatifah29.wordpress.com/2011/05/13/ pengolahan-sosis/. Diakses tanggal 28 Mei 2011.

Widiantoko, R. 2010. Proses Pembuatan Sosis. http://lordbroken.wordpress.com/ 2010/08/27/proses-pembuatan-sosis/. Diakses tanggal 5 Mei 2011.

Wood, B. J. B. 1998. Microbiology of Fermented Foods Volume 2 Second Edition. Thomson Science. USA.


SERBA-SERBI PEMBUATAN SUSU FERMENTASI KEFIR

SERBA-SERBI PEMBUATAN SUSU FERMENTASI KEFIR

Sejarah Kefir sejalan dengan sejarah produk fermentasi susu. Produk susu fermentasi diperkirakan sudah dikenal sejak 6.600 SM oleh masyarakat di kawasan Timur Tengah yang hidup secara nomaden atau berpindah-pindah. Umumnya mereka hidup dengan beternak, mengambil susu dan daging sebagai sumber makanan. Susu hasil ternak itu mereka kumpulkan dalam kantung yang terbuat dari kulit kambing atau bagian perut hewan ruminansia. Pengambaraan yang mereka lakukan dibawah terik matahari dengan membawa kantung susu tersebut menjadikan aktivitas mikroorganisme yang ada pada kulit kambing (sebagai kantung susu) memfermentasi susu menjadi gumpalan (curd). Secara terus menerus mereka secara tidak disengaja mekonsumsi hasil fermentasi susu dan ternyata tercatat memberikan dampak kesehatan, dan mereka berumur panjang.Inilah awal dikenalnya produk susu fermentasi. (Adina, 2009)

Asal mula nama Kefir diduga dari dari bahasa Turki ‘Keif’, yang berarti keadaan atau kondisi yang baik. Kefir merupakan produk susu yang berasa asam, alkoholik, dan karbonat, yang berasal dan banyak dikonsumsi di kawasan Kaukasia. Di daerah Rusia, kefir merupakan minuman populer yang diproduksi dan diperdagangkan dalam jumlah besar. (Anonymous, 2011b)

Dalam beberapa catatan sejarah disebutkan bahwa kefir berasal dari kawasan Eropa Tenggara, yang dikenal dengan Kaukasus, terletak diantara Laut Hitam dan Laut Kaspia. Masyarakat dibagian Utara Pegunungan Kaukasus telah mengkonsumsi kefir selama berabad-abad, dan terbukti stamina serta kesehatan tubuh mereka terjaga dengan baik, meraka rata-rata berumur panjang. (Adina, 2009)

Penggunaan kefir dengan pemahaman modern yang berkhasiat bagi penyembuhan, dan dilanjutkan dengan produksi kefir dalam skala besar yang dilakukan Rusia tidak lepas dari cerita klasik yang dikenal dengan rencana Blandov atau The Blandov’s Plan. (Adina, 2009)

Sekumpulan dokter Rusia mempunyai misi mendapatkan biji kefir agar dapat memproduksi kefir untuk tujuan pengobatan. Rencana tim dokter ini disampaikan ke Blandov bersaudara, yang memiliki bisnis olahan susu, yaitu Moscow Dairy, dan industri keju di kawasan pegunungan Kaukasus. (Adina, 2009)

Nikolia Blandov mengirimkan seorang gadis cantik bernama Irina Sakharova, dan melakukan pendekatan ke Pangeran Kaukasus (Bekmirza Barchorov) agar mau memberikan sejumlah biji kefir. Singkatnya Irina berhasil mendapatkan 4,5 Kg biji kefir. Pada September 1908, Irina Sakharova membawa botol berisi kultur kefir pertama ke Moscow. Misi mendapatkan biji kefir ini disebut The Blandov’s Plan. (Adina, 2009)

Kefir dan Penyimpanannya

Bibit kefir terdiri atas granula (butiran) mulai seukuran biji gandum sampai biji kenari. Butiran itu tumbuh dari ukuran sangat kecil dan terus tumbuh selama inkubasi. Sebanyak 50 g butiran kefir basah dapat tumbuh menjadi dua kali lipat dalam 7 – 10 hari jika dipindahkan ke dalam 500 ml susu segar enam kali seminggu. Untuk menumbuhkan bibit kefir dapat digunakan susu penuh, susu skim, atau whei susu yang telah dinetralkan. (Fardiaz, 2000)

Butiran-butiran bibit kefir terdiri atas mikroorganisme yang dikelilingi oleh matriks berbentuk lendir yang terdiri atas gula polisakarida yang disebut kefiran (ini diproduksi oleh bakteri tertentu). Bibit kefir juga terdiri atas campuran berbagai bakteri dan kamir (ragi), masing-masing berperan dalam pembentukan cita rasa dan struktur kefir.

Lactobacillus

Cocci

Yeast

L. acidophilus

Leuc. mesenteroides ssp. dextranicum

Candida kefir

L. kefir

Leuc. mesenteroides ssp. cremoris

Torulopsis holmii

L. kefirgranum

L.lactis ssp. Lactis

Saccharomyces delbrueckii

L. parakefir

L. lactis ssp. lactis var. diacetylactis

Kluyveromyces lactis

L. kefiranofaciens

L. lactis ssp. cremoria

K. marxianus ssp. bulgaricus

L. brevis

S. thermophilus

K. marxianus ssp. marxianus

L. cellobiosus

S. filant

Saccharomyces florentinus

L. casei ssp. alactosus

S. durans

S. globulus

L. casei ssp. rhamnosus

 

S. unisporus

L. helveticus

 

S. carlbergensis

L. delbrueckii ssp. lactis

 

C. pseudotropicalis

   

Torulaspora delbrueckii

        (Fardiaz, 2000)

Hidayat et al (2006) mengatakan spesies mikroorganisme dalam bibit kefir di antaranya Lactocococcus lactis, Lactobasillus acidophilus, Lb. kefir, Lb. kefirgranum, dan Lb. parakefir yang berfungsi dalam pembentukan asam laktat dari laktosa. Lb. kefiranofaciens sebagai pembentuk lendir (matriks butiran kefir), Leuconostoc sp. membentuk diasetil dari sitrat, dan Candida kefir pembentuk etanol dan karbondioksida dari laktosa. Selain itu juga ditemukan Lb. brevis, dan kamir (Torulopsis holmii dan Saccharomyces delbrueckii).

Bibit kefir tidak dapat dikeringkan dengan pemanasan karena sebagian mikroorganisme di dalamnya akan mati. Bibit kefir masih aktif jika diawetkan dengan cara pengeringan beku (freeze drying). Tapi cara terbaik menyimpan bibit kefir adalah dengan memindahkan bibit kefir lama ke dalam susu yang dipasteurisasi secara berkala, diinkubasi semalam dan disimpan dalam lemari es bersuhu 4 – 7oC. Dalam kondisi seperti ini bibit kefir tetap aktif selama kurang lebih sebulan. (Fardiaz, 2000)

Beda Kefir Dengan Yoghurt

Kefir dan yoghurt adalah produk susu yang difermentasi, tetapi  kedua produk itu mengandung jenis bakteri menguntungkan yang berbeda. Bakteri yang berperan dalam fermentasi yoghurt adalah Lactobacillus bulgaricus dan Streptococcus thermophillus yang menghasilkan asam laktat yang menyebabkan adanya rasa asam dalam yoghurt. Kefir mengandung beberapa bakteri menguntungkan yang tidak ditemukan   di yogurt, Lactobacillus caucasus, Leuconostoc, spesies Acetobacter dan spesies Streptococcus. Kefir juga mengandung yeast yang menguntungkan seperti halnya Sacharomyces kefir dan Torula kefir, yang sangat mendominasi, mengontrol dan menghilangkan yeast patogenik yang sangat merugikan (destruktif/merusak) didalam tubuh.Yogurt mengandung bakteri menguntungkan yang bersifat  “transient” yang menjaga sistim pencernaan bersih dan memberikan makanan unuk bakteri yang menguntungkanyang berada disana.  Tapi kefir sebenarnya dapat  menbuat koloni didalam usus,sebuah presentasi yang mana yogurt tidak   dapat menyamainya.

yogurt merupakan komposisi dari sejumlah  kecil benih keturunan murni bakteri dengan tenggang kehidupan yang sangat pendek. Hal ini berarti bahwa kultur yogurt lama kelamaan akan melemah seiring dengan penggunaannya dan  harus dibuang. Selain itu, perbedaan jenis starter pada kedua produk menyebabkan hasil metabolit starter mikroba dan kandungan nutrisi pada kefir jelas lebih bervariasi (kompleks) daripada yoghurt. Metabolit kefir terdiri dari asam laktat, etanol, CO2, sedangkan pada yoghurt hanya asam laktat saja. Perbedaan kefir dan yoghurt dapat dilihat melalui table di bawah ini:

Faktor

Kefir

Yoghurt

 

Starter mikroba 

Terdiri atas 30 jenis mikroba yang tergolong khamir dan bakteri 

Lactobacillus bulgaricus dan Streptococcus thermophillus 

Metabolit starter mikroba

Asam laktat,etanol,CO2

Asam laktat 

Kandungan nutrisi 

Lebih kompleks 

Kurang kompleks 

Disgestive 

Lebih mudah dicerna 

Lebih sulit dicerna 

Metode Pembuatan

Tidak bisa metode backslope 

Bisa metode backslope

Ketahanan

dalam usus

Lebih tahan

Lebih resisten

Perbedaan Kefir dan Yoghurt     (Anonymous. 2011a)

Proses


 

Pembuatan kefir pada prinspinya sama dengan pembuatan yogurt. Pada pembuatan kefir dilakukan beberapa tahapan proses sebelum akhirnya kefir dapat dikonsumsi, tahap- tahap yang dibutuhkan adalah :

  • Pemanasan susu pada suhu 85oC selama 30 menit atau 95oC selama 5 menit : pemanasan dilakukan untuk menghilangkan bakteri yang tidak diinginkan pada susu yang kemungkinan bersifat pathogen, mempersiapkan susu sebagai media pertumbuhan bibit kefir, serta untuk mendenaturasi protein pada susu sehingga meningkatkan viskositas produk yang diperoleh.
  • Didinginkan sampai 220C

    Suhu susu setelah dipanaskan diturunkan hingga mencapai ± 220C yang merupakan suhu optimum bagi pertumbuhan bibit kefir.

  • Penambahan bibir kefir

    Bibit kefir yang terdiri dari beberapa jenis mikroba kemudian ditambahkan ke dalam susu untuk memulai fermentasi

  • Inkubasi selama 20 jam pada suhu 230C atau pada suhu 100C selama 2 hari

    Inkubasi dilakukan untuk member waktu kepada mikroba untuk berkembang biak dan menghasilkan hasil metabolit yang akan mempengaruhi rasa dan aroma dari kefir. Hasilnya, susu akan membentuk gumpalan karena protein di dalam susu mengalami denaturasi akibat adanya asam laktat yang dihasilkan oleh mikroba dalam bibit kefir sehingga pH menurun. Selama waktu berlangsungnya fermentasi, bakteri asam laktat homofermentatif streptococci tumbuh dengan cepat, ditandai dengan turunnya pH. Rendahnya pH membantu pertumbuhan lactobacilli, akan tetapi menyebabkan jumlah streptococci berkurang. Adanya khamir pada biji kefir, mendorong pertumbuhan bakteri streptokokus yang menghasilkan aroma. Selama fermentasi, pertumbuhan bakteri asam laktat disokong oleh khamir dan bakteri asam asetat

  • Penyaringan

    Susu yang telah menggumpal kemudian disaring untuk memisahkan antara biji kefir dengan filtrat yang dapat dikonsumsi. Pemisahan ini juga bertujuan suapaya fermentasi yang dilakukan oleh kefir tidak berlanjut.

  • Pendinginan

    Setelah dilakukan penyaringan, filtrate hasil penyaringan didinginkan pada suhu 50C selama 2-3 jam untuk memperpanjang umur simpan

Faktor-Faktor Yang Mempengaruhi Kualitas Kefir

Selain itu dalam pembuatan kefir dibutuhkan beberapa pengendalian proses untuk mendapatkan kefir yang siap untuk dikonsumsi. Beberapa hal yang perlu dikendalikan adalah :

  • Lama Fermentasi

    Waktu fermentasi yang direkomendasikan berkisar antara 12-72 jam . Lama fermentasi ini juga dipengaruhi oleh suhu fermentasi. Waktu fermentasi yg lama menurunkan rata-rata suhu fermentasi Waktu fermentasi yg pendek meningkatkan rata-rata suhu fermentasi

  • pH susu

    Tergantung pH bahan pangan yg difermentasi. Pada bahan pangan yg sangat asam, khamir dan jamur cepat berkembang daripada bakteri karena ketahanan asamnya lebih baik dari bakteri. Makanan yang mengandung asam biasanya tahan lama, tetapi jika oksigen cukup jumlahnya dan kapang dapat tumbuh serta fermentasi berlangsung terus, maka daya awet dari asam tersebut akan hilang. Pada keadaan ini mikroba proteolitik dan lipolitik dapat berkembang biak. Sebagai contoh misalnya susu segar yang pada umumnya akan terkontaminasi dengan beberapa macam mikroba, Dalam hal ini yang dominant mula-mula adalah Streptococcus lactis, sehingga dapat menghasilkan asam laktat. Tetapi pertumbuhan selanjutnya dari bakteri ini akan terhambat oleh keasaman yang dihasilkannya sendiri. Oleh karena itu bakteri tersebut akan menjadi inaktif sehingga kemudian akan tumbuh bakteri jenis Lactobacillus yang Iebih toleran terhadap asam daripada Streptococcus. Lactobacillus juga akan menghasilkan asam lebih banyak lagi sampai jumlah tertentu yang dapat menghambat pertumbuhannya Selama pembentukan asam tersebut pH susu akan turun sehingga terbentuk “curd” susu. Pada keasaman yang tinggi Lactobacillus akan mati dan kemudian tumbuh ragi dan kapang yang lebih toleran terhadap asam. Kapang akan mengoksidasi asam sedangkan ragi akan menghasilkan hasil-hasil akhir yang bersifat basa dari reaksi proteolisis, sehingga keduanya akan menurunkan asam sampai titik di mana bakteri pembusuk proteolitik dan lipolitik akan mencerna “curd” dan menghasilkan gas serta bau busuk.

  • Suhu fermentasi

    Suhu terbaik untuk melakukan fermentasi kefir adalah 22-30°C . Setiap bakteri dan kultur punya syarat suhu spesifik untuk pertumbuhannya, suhu yang rendah akan menyebabkan waktu fermentasi yg lama sedangkan suhu yang lebih tinggi akan mempersingkat waktu fermentasi. Suhu
    yang lebih tinggi dari 40oC pada umumnya menurunkan kecepatan pertumbuhan dan pembentukan asam oleh bakteri asam laktat

  • Wadah/tempat fermentasi

    Wadah yg cocok untuk melakukan fermentasi adalah gelas yg terbuat dari tanah atau porselen. Wadah yang terbuat dari tembaga & alumunium tidak cocok untuk fermentasi karena dalam proses fermentasi dihasilkan asam laktat yang bersifat korosif

  • Cara memperpanjang umur simpan

    Supaya kefir dapat disimpan sampai beberapa saat harus dilakukan penggantian susu yg di gunakan sbg makanan bibit setiap beberapa minggu dan bibit dipelihara agar benar-benar aktif Setelah difermentasi kefir yang telah jadi sebaiknya disimpan pd lemari pendingin (4°C) untuk memperpanjang umur simpan, selain itu kefir dapat dimatangkan pada suhu 10-18°C utk 1-4 hari sehingga menghasilkan aroma lbh kuat     

Kualitas

Menurut Codex Standar Alimentarius dalam Standar Codex untuk Susu Fermentasi (CODEX STAN 243-2003) tahun 2003 komposisi akhir dari kefir harus mengandung :

Komposisi

Jumlah

Protein (%)

Min 2.8

Lemak (%)

< 10

Asam laktat (%)

Min 0.6

pH 

<4,65 

Etanol (%)

0.01 – 0.1 %

Jumlah kultur starter (cfu/g)

Min 107

Yeast (cfu/g)

Min 104

Perubahan yang Terjadi Selama Proses Pembuatan Kefir

    Dalam proses fermentasi kefir oleh bibit kefir akan terjadi perubahan baik rasa,aroma maupun tekstur dari susu. Perubahan ini disebabkan oleh hasil metabolit yang dihasilkan oleh mikroba yang ada di dalam penambahan bibit kefir. Adapaun beberapa perubahan yang terjadi adalah :

  • Keasaman kefir berkisar antara 0,85% menjadi 1,0% karena adanya pemebentukan asam laktat dari laktosa oleh mikroba-mikroba seperti Lactococcus lactis, Lactobacillus acidophilus, Lb. kefir, Lb. kefirgranum, Lb. parakefir.
  • pH menurun sampai di bawah 4,5 karena adanya asam laktat yang terbentuk.
  • Terbentuk karbon dioksida (0.08% – 0,2 %) sehingga produk mempunyai rasa karbonat. Karbon dioksida yang terbentuk diperoleh dari Candida kefir yang selain menghasilkan karbon dioksida juga menghasilkan etanol.
  • Adanya yeast (Candida kefir) menghasilkan etanol pada kefir (0,5% – 1%)
  • Susu menjadi lebih mengental karena adanya Lb. kefiranofaciens yang membentuk lender (matriks butiran kefir)
  • Terbentuk aroma yang khas yang berasal dari senyawa diasetil dari sitrat yang dihasilkan Leuconostoc sp.

Nutrisi Kefir

    Kandungan zat gizi kefir hampir sama dengan susu yang digunakan sebagai bahan kefir namun memiliki berbagai kelebihan bila dibandingkan dengan susu segar. Kelebihan tersebut yaitu adanya :

1) asam yang terbentuk dapat memperpanjang masa simpan, mencegah pertumbuhan mikroorganisme pembusuk sehingga mencegah pertumbuhan mikroorganisme patogen dan meningkatkan keamanan produk kefir

2) meningkatkan ketersediaan vitamineral (B2, B12, asam folat, fosfor dan kalsium) yang baik untuk tubuh

3) mengandung mineral dan asam amino esensial (tryptopan) yang berfungsi sebagai unsur pembangun, pemelihara, dan memperbaiki sel yang rusak serta memberikan efek relaksasi bagi sistem saraf sehingga dapat mengobati penderita insomnia

4) fosfor dari kefir membantu karbohidrat, lemak dan protein dalam pembentukan sel serta untuk menghasilkan tenaga

5) mengandung kalsium (Ca) dan magnesium (Mg) serta Chromium (Cr) sebagai unsure mineral mikro esensial

Nutritonal Atributes

Nutritional components

Consentration

Vitamin (mg/kg) 

Vitamin B1 

<10 

  

Vitamin B2 

<5 

  

Vitamin B5

3 

Amino Acid (mg/100g) 

Treonine 

182 

  

Lysine 

376 

  

Valine 

220 

  

Isoleusine 

262 

  

Methionine 

137 

  

Phenylalanine 

231 

  

Tryptophan 

70 

Mineral Macro-elements (%) 

Potassium 

1,65 

  

Calsium  

0,86 

  

Magnesium 

1,45 

  

Phosphorus 

0,30 

Micro-elements (mg/Kg)

Copper 

7,32 

  

Zinc  

92,7 

  

Iron 

20,3 

  

Manganese 

13,0 

 

Cobalt 

0,16 

  

Molybdenum 

0,33 

Manfaat Kefir    

Sebagai susu fermentasi, kefir mengandung berbagai macam manfaat kesehatan. Manfaat yang dapat diperoleh dari mengkonsumsi kefir antara lain :

  • Kefir mudah dicerna, membersihkan usus, menekan bakteri patogen dan meningkatkan jumlah bakteri menguntungkan (probiotik)
  • Mengatasi sembelit, mengatasi rasa kembung perut (mengurangi gas dalam perut)
  • Membersihkan seluruh tubuh dari racun (detoksifikasi)
  • Mengatasi depresi dan ADHD (attention deficit hyperactivity disorder yang artinya penderita yang tak dapat konsentrasi karena hiperaktif)
  • Meningkatkan fungsi  kekebalan tubuh
  • Membantu penderita lactose-intolerance

    Lactose-intolerance atau ketidakmampuan mencerna laktosa itu terjadi karena seseorang tidak dapat memproduksi enzim beta-galaktosidase oleh sel epitel usus halus akibat kelainan genetik. Jika orang itu mengkonsumsi susu, laktosa dalam usus halus tidak dapat dicerna menjadi galaktosa dan glukosa sebelum diangkut ke dalam tubuh untuk metabolisme lebih lanjut. Molekul laktosa yang tidak dapat diserap tubuh kemudian masuk ke dalam usus besar dan dihidrolisis oleh bakteri yang memproduksi beta-galaktosidase. Galaktosa dan glukosa yang terbentuk akan dimetabolisme oleh bakteri homofermentatif dan heterofermentatif menghasilkan asam dan sejumlah gas di dalam usus besar sehingga orang tersebut akan menderita diare, kembung, dan sakit perut. Produk fermentasi susu sangat baik bagi penderita lactose-intolerance karena sebagian besar laktosa sudah dipecah oleh bakteri asam laktat sehingga kandungan laktosanya rendah. Selain itu bibit (starter) kefir juga merupakan sumber enzim beta-galaktosidase untuk memecah laktosa dalam susu.

  • Penurun kolesterol dan risiko kanker

    Beberapa galur (strain) bakteri asam laktat mampu melakukan metabolisme kolesterol dari makanan dalam usus halus sehingga tidak diserap tubuh. Beberapa galur bakteri asam laktat mampu melakukan dekonyugasi garam bile dalam usus halus untuk mencegah absorpsi kembali oleh tubuh sehingga merangsang hati untuk mensintesis lebih banyak garam bile dari kolesterol serum. Kedua hal itu menurunkan kadar kolesterol serum. Selain itu beberapa penelitian juga membuktikan, mengkonsumsi produk fermentasi susu yang mengandung bakteri asam laktat dapat menurunkan risiko timbulnya kanker atau tumor dalam saluran pencernaan. Sebab, bakteri asam laktat yang hidup dalam produk fermentasi susu menekan pertumbuhan bakteri lain di dalam saluran pencernaan. Bakteri yang tidak diinginkan itu dalam saluran pencernaan memproduksi beberapa enzim tertentu, misalnya betaglukuronidase dan azoreduktase yang dapat mengubah senyawa prokarsinogen dalam makanan menjadi karsinogen (misalnya nitrit menjadi nitrosamin), yaitu senyawa penyebab kanker. Kontrol terhadap pertumbuhan bakteri yang tidak diinginkan itu dapat menurunkan pembentukan karsinogen sehingga mengurangi risiko kanker kolon (usus besar). Bakteri asam laktat juga merangsang pergerakan isi saluran pencernaan sehingga menurunkan konsentrasi prokarsinogen dan karsinogen dalam saluran pencernaan.

  • Mengurangi gejala kegelisahan karena susu mengandung Lactalbumin : Meningkatkan  tingkat serotonin pada otak, yang mana dapat memperbaiki suasana hati  pada saat stress.
  • Kefir dapat mengobati diabetes karena nutrisi pada kefir menyediakan bahan-bahan untuk memperbaiki sel insulin yg rusak
  • Adanya kandungan asam amino triptofan dapat memberikan efek relaksasi bagi sistem saraf sehingga dapat mengobati penderita insomnia.

PEMBUATAN & FERMENTASI SUFU

PEMBUATAN & FERMENTASI SUFU

Sufu adalah produk tradisional dari Cina, yang menyerupai keju yang lunak, dibuat dari dadih susu kedelai dengan bantuan kapang atau atau bakteri asam laktat (Koswara, 1997). Proses pembuatan sufu pada mulanya hanya dianggap sebagai peristiwa alam. Tetapi pada tahun 1929, Wai berhasil mengisolasi dan mempelajari bahwa proses fermentasi pada curd kedelai disebabkan adanya mikroorganisme dari spesies Mucor. Saat ini proses pembuatan sufu sudah berkembang dengan menggunakan kulltur atau starter  murni untuk proses fermentasinya karena waktu fermentasi yang dihasilkan lebih cepat dan produk yang dihasilkan seragam, efisien, lebih terkontrol, dan pasti jadi.

Berdasarkan proses pembuatannya sufu dapat dlklasifikasikan menjadi 4 yaitu:

  1. Sufu yang difermentasi dengan kapang starter murni
  2. Sufu yang difermentasi secara alami/tradisional tanpa penambahan starter, namun dikondisikan pada lingkungan tertentu untuk kapang dan bakteri asam laktat yang diinginkan tumbuh.
  3. Sufu yang difermentasi dengan bakteri starter murni
  4. Sufu yang diperam secara enzimatis, yaitu tidak terdapat fermentasi sebelum pemeraman, sejumlah koji ditambahkan pada saat pemeraman. Pemeraman dilakukan selama 6-10 bulan.

Berdasarkan warnanya sufu dapat diklasifikasikan menjadi 3, yaitu:

Sufu merah (hung doufu-ru)

Bumbu akhir dalam proses pembuatannya adalah garam, minuman beralkohol, gula, dan angkak. Angkak adalah produk fermentasi beras oleh Monascus spp. Yang berwarna merah. Warna pada bagian permukaan sufu merah adalah merah hingga ungu, dan pada bagian dalam adalah kuning hingga jingga. Karena warnanya yang menarik dan aromanya yang khas maka sufu merah adalah jenis sufu yang paling disukai di Cina.

Sufu abu-abu

Campuran bumbu yang digunakan mengandung whey, garam, dan rempah-rempah. Sufu jenis ini pada proses fermentasinya didominasi oleh bakteri dan kapang yang menghasilkan tekstur yang lebih keras dan aroma yang khas. Sufu ini paling jarang ditemuidi Cina.

Sufu putih (pai doufu-ru)

Campuran bumbu yang digunakan sama dengan yang digunakan pada sufu merah tetapi tidak menggunakan angkak. Pada bagian permukaan dan dalam berwarna putih hingga kuning. Sufu jenis ini paling disukai di Cina Selatan karena kadar garamnya lebih rendah daripada sufu merah.

Mikroba

Mikroorganisme yang digunakan pada pembuatan sufu meliputi Actinomucor elegans, Actinomucor taiwanensis, Actinomucor repens, Mucor circinelloides, Mucor racemonsus, Mucor sufu, Mucor wutungkiao, Mucor hiemalis, Mucor salvaticus, Mucor substilssmus, Rhizopus oligosporus, Rhizopus oryzae, Rhizopus microsporus var. Microsporus, Lactobacillus plantarum, dan Micrococcus spp. (Han, 2000).

Berikut adalah karakteristik jamur yang dapat digunakan dalam proses fermentasi:

ü  Memiliki enzim dengan aktivitas proteolitik dan lipolitik yang tinggi

ü  Memiliki miselium berwarna putih atau kurang lebih seperti itu, atau putih kekuningan

ü  Tekstur dari lapisan miselianya harus kenyal dan padat sehingga selaput itu dapat membentuk suatu lapisan di sekitar pehtzse dan bertindak sebagai pelindung produk akhir sufu dari perubahan bentuk

ü  Pertumbuhan dari jamur tidak menyebabkan off-odor, rasa yang tidak enak, atau mycotoxins dan jamur tersebut harus memiliki ketahanan terhadap bakteri lain yang pertumbuhannya tidak diinginkan selama proses fermentasi.

Pembuatan Sufu

Pembuatan sufu melalui beberapa langkah yaitu persiapan tahu, pembuatan pehtze, penggaraman, dan pemeraman.

Persiapan Tahu

Kualitas tahu dipengaruhi oleh komposisi kedelai, karakteristik sari kedelai, dan koagulan. Langkah pertama yaitu kacang kedelai dicuci & direndam semalaman. Kemudian ditambah air lalu digiling hingga didapatkan slurry. Slurry diendapkan & disaring hingga diperoleh sari kedelai. Sari kedelai lalu dikoagulasi pada suhu 70-80°C dengan penambahan asam, garam kalsium sulfat atau magnesium sulfat hingga terbentuk curd kedelai. Koagulan yang ditambahkan adalah 2,5-3,5% dari berat kering kedelai. Koagulasi dilakukan dengan agitasi selama 10-15 menit agar homogen. Curd dikumpulkan dan dilakukan pengepresan sehingga diperoleh lapisan tahu. Setelah terbentuk lapisan tahu, dilakukan pemotongan sesuai selera. Kadar air tahu mencapai 79-80% dan pH 6-7, berbeda dengan tahu pada umumnya yang kadar airnya mencapai 90%.

Pembuatan Pehtze

Untuk persiapan fermentasi, tahu direndam dalam larutan yang mengandung 6 % garam dapur dan 2.5 % asam sitrat selama 1 jam, kemudian dikukus atau direbus selama 15 menit dengan tujuan untuk mencegah pertumbuhan bakteri-bakteri pencemar. Kemudian setelah dingin, permukaan tahu diinokulasi dengan kapang (Actinomucor elegans, Actinomucor taiwanesis, Mucor racemosus, Rhizopus spp. dan lain-lain) atau bakteri asam laktat(Lactobacillus plantarum dan Micrococcus spp,). Diinkubasi selama 2-7 hari pada suhu 20-30°C, RH 88-97%, dan aerob. Pada hari ke 7 nampak pehtze dengan miselium putih diatasnya. Pehtze terdiri dari 74% air, 12% protein, dan 4,3% lemak. Fungsi dari kapang adalah untuk menjaga bentuk pehtze dan menghasilkan enzim yang mendegradasikan protein, serat, dan lemak selama pematangan.

Pada tahap fermentasi tahu menjadi sufu, umumnya dilakukan dengan menggunakan kapang dari kelas Mucoraceae seperti Actinomucor elegans. A. elegans berpotensi dalam memfermentasi tahu menjadi pizi. Di samping itu A. elegans tumbuh optimal pada suhu 250C cocok untuk negara tropis seperti Indonesia. Proses pembuatan sufu juga melibatkan Lactobacillus plantarum dimana bakteri asam laktat ini menghasilkan asam laktat yang berfungsi sebagai antimikrobia yang dapat mencegah pertumbuhan mikrobia penyebab kerusakan dan pembusukan makanan.

Penggaraman

Pehtze direndam dalam suatu larutan garam yang beralkohol, terdiri dari  12% NaCl dan 10% alkohol (digunakan sake atau minuman keras yang telah disaring) selama 3-5 hari. Fungsi penggaraman adalah memberi rasa asin pada sufu, mengatur aktivitas enzim, menghambat pertumbuhan jamur dan mikrobia kontaminan lain yang tidak dikehendaki keberadaannya sekaligus hidrolisa protein dan lipida oleh mikroorganisme tersebut,  membantu pelepasan ikatan  protease dalam miselia kapang sehingga memungkinkan enzim untuk berdifusi ke dalam tofu dan selanjutnya dapat mendegradasi substrat mempengaruhi perubahan biokimia pada produk.

Pemeraman

Pehtze yang sudah diasinkan diperam dalam guci, dengan kisaran 0.25-10 liter diberi penambah rasa berupa campuran tambahan untuk membentuk rasa, aroma, dan karakeristik yang diinginkan. Dalam guci pemeraman rasio lapisan pehtze dan bahan tambahan adalah 2:1. Bumbu yang dapat ditambahkan meliputi gula, garam, angkak, alkohol, merica, perasa mawar, dan bubuk cabai. Proses  modern memerlukan waktu 2-3 bulan, proses tradisional 6 bulan. Setelah 30 hari pemeraman terjadi perubahan total nitrogen larut meningkat sedangkan total nitrogen tak larutnya menurun. Lemak pada pehtze terhidrolisa sebagian selama pemeraman, sehingga asam lemak bebas meningkat. Fungsi dari pematangan adalah:

Untuk membentuk rasa, aroma & karakeristik yang diinginkan:

a)    Perombakan protein oleh kapang menghasilkan asam glutamat dan glisin.

b)    Asam lemak hasil hidrolisis lipid bereaksi dengan alkohol membentuk senyawa ester.

Untuk pengawetan:

            Alkohol 10% dan NaCL 12% berfungsi untuk mencegah pembusukan oleh BAL dan pertumbuhan bakteri patogen misalnya Staphylococcus aureus.

Untuk pewarnaan:

Penambahan angkak berperan dalam memberikan warna merah pada sufu merah.

Fungsi Sufu bagi Tubuh

Sufu dikonsumsi sebagai makan pagi karena rasanya yang disukai dan sebagai diet tepung. Selain itu karena terbuat dari kedelai, mudah dicerna, dan kandungan protein  yang tinggi dari makanan kedelai  lainnya seperti miso dan natto. Selain itu kadar isoflavonnya 20x lebih tinggi setelah 50 hari pemeraman. Isoflavon merupakan antioksidan, sehingga orang Cina menggolongkan sufu sebagai makanan fungsional.  Memiliki tekstur lembut seperti  konsistensi mentega dan keju, sehingga bisa diterima oleh Negara- Negara  Eropa sebagai makanan menyehatkan dan bebas kolestrol karena lemak pada sufu telah terdegadasi menjadi asam-asam lemak saat proses fermantasi dan pemeraman. Komposisi sufu per 100 gram secara umum dapat dilihat pada tabel berikut:

Komponen Kandungan
Kadar air

Protein Kasar

Lemak Kasar

Serat Kasar

Karbohidrat

Abu

Kalsium

Phosphor

Besi

Thiamin (vit B1)

Riboflavin (Vit B2)

Niasin

Vitamin B21

Energi

58-70 g

12-17g

8-12 g

0.2-1.5 g

6-12 g

4 – 9 g

100-230 mg

150-300 mg

7-16 mg

0.04-0.09 mg

0.13-0.36 mg

0.5-1.2 mg

1.7-22

460-750 Kj

Tabel 1. Komposisi sufu per 100 gram secara umum (Han, 2000).

Proteolisis merupakan proses yang berperan sangat penting selama proses pemeraman. Asam amino dan peptida dihasilkan melalui hidrolisis protein oleh protease. Kandungan asam amino tiap jenis sufu berbeda karena adanya perbedaan proses dan bumbu yang digunakan. Asam glutamat dan aspartat adalah asam amino yang paling besar jumlahnya pada sufu merah dan sufu abu-abu. Pebandingan asam glutamat dan asam aspartat dengan total asam amino mencapai 30%, yang menyebabkan rasa enak pada sufu. Kandungan sistein dan metionin pada sufu abu-abu lebih rendah daripada sufu merah karena degradasi atau perubahan ke senyawa lain yang mengandung sulfur selama pemeraman. Berikut adalah kandungan  asam amino(gram/100gram) pada tiap jenis sufu:

Asam amino Sufu merah Sufu  abu-abu Sufu putih(% molar)
Alanin

Arginin

Asam aspartat

Sistein

Asam glutamate

Glisin

Histidin

Isoleusin

Leusin

Lisin

Metionin

Fenilalanin

Prolin

Serin

Treonin

Triptofan

Tirosin

Valin

0.32

0.38

1.00

0,59

2,15

0,54

0,20

0,88

0,81

0,59

0,51

0.59

0,38

0,34

0,45

0,09

0,54

0,16

0,70

0,27

0,66

0,20

2,08

0,42

0,18

0,58

0,95

0,29

0,14

0,59

0,29

0,27

0,23

0,05

0,25

0,58

7,0

2,5

13,7

0

22,0

7,0

1,9

4,5

7,6.

7,3

0

2,6

7,7

5,2

4,1

0

1,0

5,2

   Tabel 2. Kandungan  asam amino(gram/100gram) pada tiap jenis sufu (Han, 2000).

Berdasarkan table di atas, kandungan asam amino pada sufu yang tertinggi yaitu kandungan asam glutamat baik pada sufu merah, abu-abu, bahkan sufu putih yang mencapai 22%. Sehingga produk ini baik dalam memenuhi kebutuhan asam amino dalam tubuh. Energi yang dihasilkan dari sufu yang dikonsumsi per 100 gramnya cukup tinggi, yaitu sebesar 460-750 Kj. Sehingga, produk ini termasuk dalam produk tinggi kalori. Kadar air pada sufu cukup menurun dengan tinggi jika dibandingkan dengan saat masih dalam bentuk tahu. Sehingga, kemungkinan untuk terjadinya kontaminasi pada sufu akan menurun dari pada saat dalam bentuk tahu sehingga umur simpannya pun akan bertambah.


PEMANFAATAN LIMBAH KULIT PISANG MENJADI ES KRIM FUNGSIONAL SEBAGAI SUMBER GIZI ALTERNATIF

PEMANFAATAN LIMBAH KULIT PISANG MENJADI ES KRIM FUNGSIONAL SEBAGAI SUMBER GIZI ALTERNATIF

(BY RIZKY KURNIA. W ITP-UB)

BAB I

PENDAHULUAN

 

1.1 Latar Belakang

Pisang merupakan tanaman buah tropis yang berasal dari Asia Tenggara, Brazil, dan India. Pisang menjadi buah yang penting di masyarakat Indonesia, karena pisang merupakan buah yang sering dikonsumsi dibandingkan dengan buah yang lain dan dikonsumsi tanpa memperhatikan tingkat sosial.

Indonesia merupakan penghasil pisang terbesar keenam di dunia. Bahkan di Asia, Indonesia merupakan penghasil pisang terbesar, karena hampir 50 % produksi pisang di Asia, dihasilkan oleh Indonesia, dan setiap tahun produksinya terus meningkat.
Pisang juga memiliki kandungan gizi yang tinggi, dan memiliki tingkat antioksidan yang cukup tinggi.

Di kabupaten Malang, Jawa Timur sendiri, didapatkan data bahwa peoduksi pisang, dengan jumlah tanaman yang menghasilkan 298.193 pohon, produksi pertahun sebesar 184.074 ton. Ini merupakan hasil produksi holtikultura tertinggi dibandingkan dengan jenis holtikultura lainnya.

Bukan hanya buah pisang saja yang memiliki kandungan gizi yang tinggi, namun bagian lain dari pohon pisang. Kulit pisang misalnya. Kulit pisang merupakan limbah pertanian yang cukup banyak ditemukan dimana-mana, sehingga dalam hal ini kulit pisang dapat dimanfaatkan menjadi suatu bahan/produk makanan oleh industri. Kali ini penulis mencoba mengungkapkan tentang manfaat tentang kulit pisang yang ternyata memiliki kandungan gizi yang tidak kalah banyaknya dari buah pisang. Tim Universitas Kedokteran Taichung Chung Shan, Taiwan membuktikan kulit pisang yang diambil ekstraknya bermanfaat mengurangi gejala depresi. Hal ini disebabkan adanya kandungan serotonin pada kulit buah pisang. Tidak itu saja, hasil penelitian menyebutkan ekstrak kulit buah pisang bermanfaat untuk menjaga kesehatan retina mata. Buah ini mengandung vitamin C, vitamin A, sejumlah serat dan berbagai mineral yang penting untuk tubuh. Bahkan buah pisang cocok untuk segala usia dari bayi sampai orang tua. Itu karena teksturnya yang lembut dan rasanya yang manis. Siapa sangka, kulit buah pisang ternyata dapat dimanfaatkan. Kandungan gizi kulit pisang masih cukup tinggi. Berdasarkan sejumlah penelitian terungkap bahwa kulit pisang mengandung vitamin C, vitamin B, kalsium, protein, karbohidrat dan serat yang baik untuk tubuh.

Es krim adalah salah satu camilan yang biasa dikonsumsi oleh masyarakat Indonesia untuk berbagai usia dan kelas ekonomi. Tingkat konsumsi camilan berbahan baku es dalam lima tahun terakhir di Indonesia, tingkat pertumbuhan pasarnya sedikitnya 20% setiap tahun. Tahun 2011, umpamanya, total pasar es krim sudah mendekati angka 100 juta liter dengan nilai absolut di atas US$221 juta.

Maka dari itu penulis sangat mengharapkan dengan adanya hasil karya ini, dapat memberikan motivasi lebih untuk masyarakat agar memanfaatkan kulit pisang, dan tidak membuang sembarangan sehingga mengakibatkan suatu hal yang mubazir dan dapat mencelakakan orang lain, juga supaya dapat menjadi jalan keluar untuk peristiwa kekurangan gizi yang masih melanda sebagian besar penduduk Indonesia, dikarenan harga kebutuhan pokok, dan makanan bergizi yang harganya seakan semakin melambung tinggi.

1.2 Rumusan Masalah

Rumusan masalah dalam karya ilmiah ini meliputi:

  1. Bagaimanakah kandungan gizi kulit pisang?
  2. Bagaimanakah pengolahan es krim kulit pisang?
  3. Bagaimana potensi kulit pisang sebagai sumber gizi manusia?

1.3 Tujuan Penelitian

Adapun tujuan dari penulisan karya tulis ilmiah ini adalah :

  • Mengembangkan kulit pisang supaya tidak hanya menjadi limbah, dimana jika dibuang sembarangan akan membahayakan.
  • Mengetahui teknik pengolahanes krim kulit pisang.
  • Mengembangkan suatu sumber gizi baru yang murah, halal,bergizi, bermanfaat, dan ramah lingkungan, serta nikmat dilidah.

BAB II

KAJIAN PUSTAKA

2.1 Pisang

Pisang adalah tanaman buah berupa herba yang berasal dari kawasan di Asia Tenggara (termasuk Indonesia). Tanaman ini kemudian menyebar ke Afrika (Madagaskar), Amerika Selatan dan Tengah. Di Jawa Barat, pisang disebut dengan Cau, di Jawa Tengah dan Jawa Timur dinamakan gedang.1 Pisang merupakan tanaman asli daerah Asia Tenggara termasuk Indonesia. Tanaman pisang mempunyai nama latin musa para disiaca nama ini telah diproklamirkan sejak sebelum masehi. Nama musa diambil dari nama seorang dokter Kaisar Romawi Octavianus Augustus (63 SM-14 M) yang bernama Antonius Musa. Pada zaman Octavianus Augustus, Antonius Musa selalu menganjurkan pada kaisarnya untuk makan pisang setiap harinya agar tetap kuat, sehat, dan segar. Tanaman pisang berasal dari daerah tropis yang beriklim basah. “Tanaman pisang dapat tumbuh baik di dataran rendah sampai dataran tinggi 1.000-3.000 mm pertahun. Tanaman pisang lebih senang tumbuh di daerah yang subur dengan pH tanah 4,5-7,5 (Sumarjono, 1997). Sedangkan menurut Nuryani (1996: 7) “Tanaman pisang dapat tumbuh baik di tanah yang kaya humus, tetapi dapat juga hidup di tanah kapur dengan iklim lembab banyak sinar matahari.” Akar pisang tidak tahan kekeringan atau air yang berlebihan. Tanah yang sedikit sinar matahari pertumbuhan pisang menjadi lambat. Klasifikasi botani tanaman pisang adalah sebagai berikut:

Divisi : Spermatophyta

Sub divisi : Angiospermae

Kelas : Monocotyledonae

Keluarga : Musaceae

Genus : Musa

Spesies : Musa spp.

Menurut Munadjim (1988), Sejak mulai ditanam sampai berbuah dan dipetik, tanaman pisang memerlukan waktu kira-kira satu tahun. Rata-rata setiap pohon dapat menghasilkan 5-10 kg buah.” Setelah pohon induk berbuah dan dipetik, anak pohon pisang mulai berbunga. Setelah 3-4 bulan baru pemetikan besar kecilnya buah pisang tergantung dari banyak faktor, diantaranya jenis pisang, kesuburan tanah, kecepatan tumbuh, iklim saat berbunga dan lain-lain. banyaknya buah tiap-tiap sisir tergantung daripada letak sisirnya.

Secara umum, kandungan gizi ang terdapat dalam setiap buah pisang matang adalah sebagai berikut: kalori 99 kalori, protein 1,2 gram, lemak 0,2 gram, karbohidrat 25,8 miligram (mg), serat 0,7 gram, kalsium 8 mg, fosfor 28 mg, besi 0,5 mg, vitamin A 44 RE, Vitamin B 0,08 mg, vitamin C 3 mg dan air 72 gram. Kandungan buah pisang sangat banyak, terdiri atas mineral, vitamin, karbohidrat, serat, protein, lemak dan lain-lain, sehingga apabila orang hanya mengonsumsi buah pisang saja, sudah tercukupi secara minimal gizinya.

2.2 Kulit Pisang

Kulit pisang merupakan salah satu satu bagian dari tanaman pisang yang selama ini keberadaannya terabaikan. Menurut Munadjin (1998) Kulit pisang merupakan bahan buangan (limbah buah pisang) yang cukup banyak jumlahnya yaitu kira-kira 1/3 dari buah pisang yang belum dikupas. Kulit pisang adalah produk dari limbah industri pangan yang dimanfaatkan untuk bahan pakan ternak. Kandungan unsur gizi kulit pisang cukup lengkap, seperti karbohidrat, lemak, protein, kalsium, fosfor, zat besi, vitamin B, vitamin C dan air. Unsur-unsur gizi inilah yang dapat digunakan sebagai sumber energi dan antibodi bagi tubuh manusia

Tabel 2.1 Komposisi Zar Gizi Kulit Pisang

Unsur

Jumlah

Air (%)

68,90

Karbohidrat (%)

18,50

Lemak (%)

2,11

Protein (%)

0,32

Kalsium (mg/100 gr)

715

Fosfor (mg/100 gr)

117

Besi (mg/100 gr)

166

Vitamin B (mg/100 gr)

0,12

Vitamin C (mg/100 gr)

17,5

Sumber : Munadjin (1988:63)

Berdasarkan tabel 2.1 di atas maka komposisi kimia terbanyak kulit pisang, di samping air adalah karbohidrat, yaitu sebesar 18,50%. Karbohidrat ini dapat dimanfaatkan sebagai bahan baku untuk pembuatan alkohol yang berguna sebagai bahan bakar, bahan industri kimia bahan kecantikan dan kedokteran. Manfaat lain kulit pisang yaitu sebagai bahan baku minuman beralkohol (anggur) dan makanan ternak, seperti kambing, sapi, kelinci dan lain-lain. Hal ini disebabkan nilai gizi kulit pisang cukup baik.

Kulit pisang mengandung serat yang cukup tinggi, vitamin C, B, kalsium, protein, dan karbohidrat. Hasil penelitian tim Universitas Kedokteran Taichung Chung Shan, Taiwan, memperlihatkan bahwa ekstrak kulit pisang ternyata berpotensi mengurangi gejala depresi dan menjaga kesehatan retina mata. Selain kaya vitamin B6, kulit pisang juga ternyata banyak mengandung serotonin yang sangat vital untuk menyeimbangkan mood. Selain itu, ditemukan pula manfaat ekstrak pisang untuk menjaga retina dari kerusakan cahaya akibat regenerasi retina.6


2.3 Es Krim

Menurut Standar Nasional Indonesia (1995), es krim adalah sejenis makanan semi padat yang dibuat dengan cara pembekuan tepung es krim atau campuran susu, lemak hewani maupun nabati, gula, dan dengan atau tanpa bahan makanan lain yang diizinkan. Di pasaran, es krim digolongkan atas kategori economy, good
average, dan deluxe.

Es krim dapat didefinisikan sebagai bagian buih yang membeku dengan kandungan udara 40-50% dari volume. Fase kontinyu buih mengandung padatan terlarut dan koloid seperti gula, protein, stabilizer dan kandungan lemak dalam bentuk emulsi (Frieberg, 1997). Es krim yang sebagian atau seluruh lemaknya diganti dengan lemak nabati disebut es krim imitasi atau es krim melorin (Campbell, 1975).

Dewanti (1997), menyatakan bahwa bahan-bahan pembuat es krim merupakan bahan makanan yang bernilai protein tinggi (susu dan telur) maka es krim juga mempunyai nilai protein tinggi, selain vitamin mineral. Sedangkan kandungan kalori es krim juga tinggi hal ini karena adanya penambahan gula.

Menurut Marshall et al (2003) es krim merupakan sumber energi makanan yang sangat baik. Kandungan lemak yang ada pada es krim adalah tiga sampai empat kali susu dan sepenuhnya 50% dari total padatan es krim adalah gula, termasuk laktosa, sukrosa, dan padatan-padatan sirup jagung.

Tabel 2.2 Syarat Mutu Es Krim Berdasarkan SNI

No.

Kriteria Uji

Persyaratan

1

 

 

 

2

3

4

5

6

 

 

 

7

 

 

8

9

Keadaan:

– Penampakan

– Bau

– Rasa

Lemak (% b/b)

Gula (% b/b)

Protein (% b/b)

Jumlah Padatan Non Lemak (% b/b)

Bahan Tambahan Makanan:

– Pewarna tambahan

– Pemanis buatan

– Pemantap dan pengemulsi

Cemaran Logam:

– Timbal (Pb) (mg/kg)

– Tembaga (Cu) (mg/kg)

Cemaran Arsen (As) (mg/kg)

Cemaran Mikroba:

- Angka Lempeng Total (koloni/gr)

- MPN Coliform (APM/gr)

- Salmonella (koloni/25gr)

- Listeria spp (koloni/25gr)

 

Normal

Normal

Normal

Minimal 5,0

Minimal 8,0

Minimal 2,7

Minimal 34

 

Sesuai SNI 01-0222-1995

Negatif

Sesuai SNI 01-0222-1995

 

Maksimal 1,0

Maksimal 20,0

Maksimal 0,5

 

Maksimal 30.000

<3

Negatif

Negatif

Sumber: Standar Nasional Indonesia 01-0317-1995 (1995)    

BAB III

PEMBAHASAN

3.1 Cara Pembuatan Es Krim Kulit Pisang

Dalam karya tulis ilmiah kali ini, penulis ingin mewujudkan kulit pisang dalam bentuk olahan makanan yang berupa jajanan sehat es krim kulit pisang. Penulis merasa lebih tepat jika diolah menjadi es krim karena telah menjadi makanan yang umum sekali disantap waktu lenggang dan santai, terlebih lagi pengolahannya sangat mudah dan sederhana.

Berikut resep pembuatan selai dari kulit pisang:

Bahan yang digunakan:

  • kulit pisang
  • daging buah pisang
  • gula pasir
  • air bersih
  • susu skim
  • lesitin kedelai
  • cmc
  • whipping cream

Pengolahan :

  • Kulit pisang disortasi dan dicuci kemudian dipotong kecil-kecil
  • Dihancurkan potongan kulit pisang bersama daging buah pisang dan air dengan perbandingan 2:1:2 menggunakan blender selama 10 menit.
  • Ditambahkan susu skim 11% (b/b), whipping cream 12% (b/b), gula 15%(b/b), lesitin kedelai 0,25%(b/b), penstabil cmc 0,25%(b/b).
  • Dilakukan homogenisasi dengan mixer selama 2-3 menit.
  • Dilakukan aging pada suhu 4oC selama 6 jam.
  • Di ice cream maker suhu -5oC selama 30 menit.
  • Dikemas dalam cup dan diberi label.
  • Disimpan dalam freezer dan kemudian siap didistribusikan dengan cool box

3.2 Kandungan Gizi Es Krim Kulit Pisang

Buah pisang banyak mengandung karbohidrat baik isinya maupun kulitnya. Pisang mempunyai kandungan khrom yang berfungsi dalam metabolisme karbohidrat dan lipid. Khrom bersama dengan insulin memudahkan masuknya glukosa ke dalam sel-sel. Kekurangan khrom dalam tubuh dapat menyebabkan gangguan toleransi glukosa. Umumnya masyarakat hanya memakan buahnya saja dan membuang kulit pisang begitu saja. Di dalam kulit pisang ternyata memiliki kandungan vitamin C, B, kalsium, protein, dan juga lemak yang cukup. Hasil analisis kimia menunjukkan bahwa komposisi kulit pisang banyak mengandung air yaitu 68,90 % dan karbohidrat sebesar 18,50 %. Kulit pisang mengandung vitamin C, vitamin B, kalsium, protein, dan juga lemak yang cukup (Sulffahri.2008). Hasil analisis kimia menunjukkan bahwa komposisi kulit pisang banyak mengandung air yaitu 68,90% dan karbohidrat sebesar 18,50%. Karbohidrat adalah suatu zat gizi yang berfungsi sebagai asupan energi utama, dimana tiap gramnya menghasilkan 4 kalolori (17 kilojoule) energi pangan per gram.

Dilihat dari kandungan mineralnya kulit pisang mengandung kalsium yang cukup tinggi yaitu sebesar 715 mg/100 g. Kalsium merupakan zat yang dibutuhkan sejak bayi hingga usia tua. Jumlah kebutuhan kalsium dapat dibedakan berdasarkan jenis kelamin dan usia. (Wida, 2007). Pada usia anak-anak hingga remaja merupakan usia penting untuk menabung kalsium dalam tulang. Pada usia remaja 75-85 persen massa tulang yang akan dimiliki pada saat dewasa telah terbentuk. Proses pembentukan dan penimbunan massa tulang mencapai kepadatan maksimal pada usia 35 tahun. Semakin bertambah usia semakin sedikit jaringan tulang yang dibuat dan semakin banyak jaringan tulang yang dirombak sesudah usia 35 tahun, setiap tahunnya akan terjadi kehilangan massa tulang sebesar 0,5% dan setelah umur 50 tahun, jumlah kandungan kalsium dalam tubuh akan menyusut sebanyak 30%. Kehilangan akan mencapai 50% ketika mencapai umur 70 tahun dan seterusnya mengalami masalah kekurangan kalsium. Berdasarkan Recommended Daily Allowance (RDA) USA, kebutuhan kalsium rata-rata per hari yaitu: anak-anak 800 mg, remaja 1200 mg, dewasa 1000 mg, ibu hamil dan menyusui 1200 mg, usia lanjut dan menopause 1200 mg.

    Vinson et al. (2001) menganalisis kuantitas dan kualitas antioksidan fenolik dari beberapa jenis buah, diantaranya buah pisang. Kadar total fenol pada pisang berdasarkan ekuivalen katekin sekitar 42,30 mikromol/g berat kering atau sekitar 11,2 mikromol/ g berat basah. Kadar total fenol pada kkulit pisang adalah sekitar 387,34 mg/g berat basah atau 3,61 mg/g berat kering. Senyawa fenol teruji positif dalam kulit buah pisang adalah polifenol dan flavonoid. Flavonoid dan polifenol telah digolongkan sebagai antioksidan tingkat tinggi beradasarkan kemampuannya untuk menangkap radikal bebas dan jenis oksigen aktif seperti oksigen dalam bentuk singlet, radikal bebas superoksida dan radikal hidroksil. Hal ini tentu saja menunjukkan potensi tingganya kadar antioksidan dalam buah maupun kulit pisang yang dapat dimanfaat oleh tubuh.

Kulit pisang memiliki potensi besar sebagai sumber gizi yang baru, yang jauh lebih ekonomis, mudah, dan ramah lingkungan. Karena akan mengurangi limbah rumah tangga, produksi makanan, dsb. Dengan kandungan gizi yang dipaparkan pada subbab sebelum, tentunya sudah saatnya kita mulai melirik manfaat kulit pisang ini, terutama bagi kesehatan. Ditamabah lagi kulit pisang dapat diolah dengan berbagai menu makanan yang tidak kalah lezat rasanya dibandingkan hasil olahan pisang dan buah lainnya. Selain mendapat pasokan gizi yang baik bagi tubuh kita, lidah kita juga dimanjakan dengan rasa dari hasil olahan kulit pisang tersebut. Juga menurut dari data pada bab sebelumnya, dimana hasil holtikultura terbesar di Indonesia adalah pisang, tentunya sangat murah bagi kita untuk mendapat kulit pisang ini, bukan buahnya. Jadi, potensi sebagai sumber gizi yang hemat, efisien, dan efektif dari kulit pisang untuk manusia sangat besar.

3.3 Keamanan dan Kehalalan Es Krim Kulit Pisang

Dari segi proses pembuatannya, tak ada yang kritis terhadap kehalalan es krim, yang perlu dicurigai komposisi bahan yang digunakan dalam pembuatannya. Produk Es krim kulit pisang menggunakan bahan baku yang memiliki sertifikat halal.

Produk es krim kulit pisang menggunakan bahan tambahan whipped cream. Lemak pada whipped cream ini biasanya berasal dari partially hidrogenated coconut oil dan palm oil Oleh karena itu dari segi lemak tidak ada hal yang rawan dari segi kehalalannya karena terbuat dari lemak nabati.

Padatan susu bukan lemak yang berstatus syubhat adalah whey karena whey diperoleh dari hasil samping penggumpalan susu pada tahap pembuatan keju atau kasein dimana proses penggumpalan tersebut biasanya menggunakan enzim yang dapat berasal dari hewan (sapi, babi) atau mikroorganisme disamping penggumpalan juga dapat dilakukan dengan menggunakan asam. Sedangkan padatan susu bukan lemak yang digunakan dalam pembuatan es krim kulit pisang adalah susu skim “tortura” yang telah memiliki sertifikat halal MUI. Es krim kulit pisang tidak menggunakan whey protein yang memiliki kerawanan halal, melainkan menggunakan susu skim yang telah tersertifikasi halal sehingga dijamin kemanan dan kehalalannya.

Pemanis yang digunakan dalam pembuatan es krim kulit pisang adalah gula “gulaku” yang telah terjamin kehalalannya karena telah tersertifikasi halal MUI, proses produksi gula “gulaku” juga sama sekali tidak menggunakan penggunaan bahan rawan halal. Es krim kulit pisang tidak menggunakan bahan rawan halal seperti sirup pemanis seperti sirup jagung yang memiliki rawan bahaya halal. Pembuatan sirup jagung diatas dapat dilakukan dengan dua metode utama yaitu hidrolisis (pemecahan molekul-molekul dengan bantuan air) asam dan hidrolisis enzimatik (menggunakan enzim). Hasil proses hidrolisis enzimatik berwarna jernih dan tidak menghasilkan senyawa pahit. Itu sebabnya banyak sirup ini diperoleh dengan menggunakan enzim dimana salah satu enzim yang diperlukan dengan yaitu enzim a-amilase, sayangnya enzim ini disamping dapat diperoleh dari mikroorganisme juga dapat diperoleh dari hewan. Status sirup gula jagung jadinya syubhat. Es krim kulit pisang menggunakan gula pasir “gulaku” dan tidak menggunakan sirup gula sehingga kehalalan dalam pemanis dapat dipertanggungjawabkan.

Es krim kulit pisang tidak menggunakan pewarna ataupun perisa buatan yang biasanya menggunakan gliserol dan etanol sebagai pelarut proses pembuatannya. Es krim kulit pisang hanya memanfaatkan flavor yang secara alami terdapat pada buah pisang itu sendiri tanpa melakukan penambahan perisa buatan untuk menjaga status kehalalan produk.

Emulsifier yang digunakan dalam pembuatan es krim kulit pisang adalah lesitin yang terbuat dari kedelai. Lesitin kedelai merupakan bahan nabati sehingga dari segi kehalalan pangan tidak mempunya titik rawan.

Stabilizer yang digunakan adalah CMC. Diantara penstabil yang dapat digunakan pada pembuatan es krim, ada dua yang berstatus syubhat yaitu gelatin dan gum xanthan, sedangkan lainnya tidak masalah karena berasal dari tanaman (berbagai jenis gum), rumput laut (karagenan, alginat, agar-agar) dan turunan selulosa (CMC dan mikrokristalin; selulosa sendiri berasal dari tanaman). Gelatin dapat diperoleh dari babi, sapi atau ikan, sedangkan xanthan gum adalah hasil fermentasi sehingga kehalalannya tergantung kepada media yang digunakan pada waktu pembuatan xanthan gum. Oleh karena es krim kulit pisang menggunakan stabilizer CMC dan tidak menggunakan xanthan gum ataupun gelatin maka dapat dipastikan kehalalannya.

Berdasarkan keseluruhan bahan yang digunakan dalam pembuatan es krim kulit pisang, tidak ada satupun bahan yang haram ataupun memiliki sifat rawan halal yang bernilai syubhat. Oleh karena itu es krim kulit pisang dapat dikatakan sebagai produk yang halal dan aman dikonsumsi.

BAB IV

PENUTUP

 

4.1 Kesimpulan

Es krim kulit pisang benar-benar dapat dijadikan alternatif gizi yang juga tepat bagi manusia. Kulit pisang memiliki kandungan gizi yang tinggi dan tidak kalah dengan kandungan gizi yang dimiliki buah pisang.

4.2 Saran

Berkaitan dengan hasil penelitian yang telah dilakukan, maka dalam kesempatan ini akan diajukan beberapa saran yang diharapkan dapat menjadi perhatian khusus bagi para pembaca sebagai berikut:

  1. Terciptanya produk makanan yang berasal dari limbah kulit pisang menjadi keripik dapat dimanfaatkan oleh berbagai pihak dalam berwirausaha.
  2. Dilakukan sosialisasi menyeluruh dalam masyarakat tentang pengolahan limbah kulit pisang, sehingga sesuatu yang masih sangat bermanfaat tidak terbuang percuma, malah menjadi limbah yang mengganggu.
  3. Pengolahan seperti ini diharapkan tidak hanya pada limbah kulit pisang, namun juga kepada hal-hal lain yang dianggap kurang berguna oleh masyarakat, namun sebenarnya sangat bermanfaat.

PROSES PEMBUATAN YOGURT YANG BAIK DAN BENAR

Proses Fermentasi Yoghurt

Susu terfermentasi dapat dibuat melalui beberapa cara yaitu menambahkan enzim-enzim untuk proses fermentasinya atau menambahkan mikrobia yang dapat melakukan proses fermentasi susu, cara yang pertama sangat mahal karena enzim-enzim yang harus ditambahkan jumlahnya lebih dari satu dan harus diberikan dalam kondisi tingkat kemurnian tinggi. Oleh sebab itu cara penambahan mikrobia yang dipilih, karena mikrobia tersebut secara alami terdapat pada susu, kita hanya tinggal mengisolasinya menjadi biakan murni untuk selanjutnya diperbanyak dan ditambahkan pada susu yang difermentasi. (Septia,2010)

Yogurt dibuat dengan bantuan dua jenis bakteri menguntungkan, satu dari keluarga lactobacillus yang berbentuk batang (Lactobacillus bulgaricus) dan lainnya dari keluarga streptococcus yang berbentuk bulat (Streptococcus thermophilus). Kedua bakteri yogurt ini merupakan bakteri penghasil asam laktat yang penting peranannya dalam pengaturan mikroflora usus. Saat bertumbuh di usus, Lactobacillus bulgaricus dan S. thermophilus mampu menciptakan keadaan asam yang menghambat bakteri lain. Bakteri penyebab penyakit yang umumnya tak tahan asam tak mampu bertahan di lingkungan bakteri yogurt. Sementara bakteri lain yang memang seharusnya melimpah dirangsang untuk bertumbuh. Sehingga mikroflora dalam usus didorong mendekati keadaan seimbang yang normal. Banyak penelitian menunjukkan bahwa bakteri dalam yogurt dan susu fermentasi ulain memberi ekstra manfaat bagi tubuh. Bakteri yogurt membutuhkan kondisi pertumbuhan yang cocok terutama suhu yang tepat. Umumnya bakteri tumbuh baik pada keadaan hangat. Bakteri yogurt S. thermophilus dan L. bulgaricus paling cepat tumbuh di sekitar suhu 40– 44°C (bergantung pada galurnya). Jika suhu terlalu rendah bakteri akan berkembang biak lambat atau tidak sama sekali. Sementara jika suhu terlampau panas bakteri bisa rusak dan mati. Bahaya lain, yaitu merajalelanya mikroba lain yang kondisi optimumnya di suhu lebih tinggi atau rendah. Karena lebih cepat berkembang biak di suhu tersebut, jumlah mikroba penyusup tadi dapat menyusul bahkan menyisihkan bakteri yogurt semula. (Widodo,2002)

Adapun tahap – tahap pembuatan yogurt adalah seperti berikut ini (Septia, 2010):

1. Susu segar dipanaskan sampai suhu 90 °C dan selalu diaduk supaya proteinnya tidak mengalami koagulasi. Pada suhu tersebut dipertahankan selama 1 jam. Apabila dilakukan pasteurisasi maka suhu pemanasannya adalah 70 – 75 °C . Jika hal ini yang dilakukan, maka pemanasan dilakukan sebanyak dua kali.

2. Setelah dipanaskan, selanjutnya dilakukan pendinginan sampai suhunya 37- 45 °C. Pendinginan tersebut dilakukan dalam wadah tertutup.

3. Setelah suhu mencapai 37-45 °C maka dilakukan inokulasi / penambahan bakteri ke dalam susu tersebut sejumlah 50 – 60 ml/liter susu. Penambahan bakteri dilakukan dengan teknik aseptic (di dekat api).

4. Setelah ditambah bakteri, selanjutnya diperam pada ruangan hangat (30-40 °C), dalam keadaan tertutup rapat selama 3 hari.

5. Tahap selanjutnya adalah filtrasi. Hal ini dilakukan untuk memisahkan bagian yang padat / gel dengan bagian yang cair. Pada waktu pemisahan ini diusahakan dilakukan di dekat api sehingga bagian yang cair (sebagai stater berikutnya) terhindar dari kontaminasi. Bagian yang padat inilah yang siap dikonsumsi (yoghurt). Bagian yang cair berisi bakteri Lactobacillus sp yang dapat digunakan untuk menginokulasi susu yang segar.

6. Supaya yogurt lebih lezat rasanya dapat ditambah dengan potongan buah – buahan yang segar, cocktail, nata de coco atau dibekukan menjadi es, dapat pula dicampur dengan berbagai buah-buahan untuk dibuat juice (minuman segar).

Sebagian besar senyawa alam terdegradasi oleh beberapa jenis mikroba dan bahkan banyak senyawa buatan manusia juga diserang oleh bakteri. Terjadi dalam lingkungan tanpa oksigen (atau kondisi untuk reaksi redoks yang cocok), degradasi ini mengakibatkan terjadinya fermentasi.

Meskipun banyak metode yang menggunakan bakteri untuk melakukan fermentasi terhadap senyawa organik, tetapi pada dasarnya yang terjadi pada semua fermentasi adalah NAD+ hampir selalu direduksi menjadi NADH.

Metabolisme yang melibatkan oksidasi substrat, elektron dari molekul organik akan paling sering diberikan ke NAD. (Hal ini berlaku baik dalam fermentasi dan respirasi). Di bawah ini ditampilkan contoh pengurangan NAD


– oksidasi gliseraldehida-3-fosfat untuk 1,3 bisphosphoglycerate. Elektron akan dihapus dari karbon dilambangkan dengan warna merah dan disumbangkan ke NAD +.

Fermentasi menghasilkan banyak NADH. Akumulasi NADH menyebabkan masalah pad areaksi anaerob. NADH yang terlalu banyak akan mencegah oksidasi lebih lanjut dari substrat karena kurangnya + NAD untuk menerima elektron. Dalam jalur fermentasi banyak, langkah-langkah setelah produksi energi dilakukan sebagian untuk menyingkirkan NADH tersebut. Piruvat sebagai perantara penting Banyak reaksi yang pada akhirnya menghasilkan piruvat. Piruvat adalah perantara yang berharga karena dapat digunakan untuk sintesis sel dan enzim yang berbeda dapat bertindak di atasnya. Ini memberikan fleksibilitas mikroba.

Energi berasal dari Substrat-Tingkat Fosforilasi (SLP) Substrat diubah menjadi senyawa terfosforilasi dan dalam reaksi selanjutnya fosfat energi tinggi ditransfer ke ATP.

Fermentasi dapat melibatkan setiap molekul yang dapat mengalami oksidasi. Substrat umum termasuk gula (seperti glukosa) dan asam amino. Produk khas tergantung pada substrat tetapi bisa termasuk asam-asam organik (asam laktat, asam asetat), alkohol (etanol, metanol, butanol), keton (aseton) dan gas (H2 dan CO2)

Preparasi Pembuatan Yoghurt

Selain dibuat dari susu segar, yoghurt juga dapat dibuat dari susu skim (susu tanpa lemak) yang dilarutkan dalam air dengan perbandingan tertentu, tergantung kepada kekentalan produk yang diinginkan. Selain dari susu hewani, belakangan ini yoghurt juga dapat dibuat dari campuran susu skim dengan susu nabati (susu kacang-kacangan). Sebagai contoh, yoghurt dapat dibuat dari kacang kedelai, yang sangat populer dengan sebutan “soyghurt”. Yoghurt juga dapat dibuat dari santan kelapa, yaitu yang disebut dengan “miyoghurt”.

Prinsip pembuatan yoghurt adalah fermentasi susu dengan menggunakan bakteri Lactobacillus bulgaricus dan Streptococcus thermophilus. Kedua macam bakteri tersebut akan menguraikan laktosa (gula susu) menjadi asam laktat dan berbagai komponen aroma dan citarasa. Lactobacillus bulgaricus lebih berperan pada pembentukan aroma, sedangkan Streptococcus thermophilus lebih berperan pada pembentukan citarasa yoghurt. Yoghurt yang baik mempunyai total asam laktat sekitar 0,85-0,95%. Sedangkan derajat keasaman (pH) yang sebaiknya dicapai oleh yoghurt adalah sekitar 4,5.

Langkah-langkah dalam pembuatan yogurt dapat diterangkan dari yang paling mudah dan sederhana hingga yang menyerupai produk komersial. Cara yang paling sederhana untuk pembuatan yogurt, bahan yang diperlukan hanyalah susu dan bibit yogurt, serta peralatan dapur sederhana seperti panci dan sendok. Segala macam jenis susu dapat digunakan untuk pembuatan yogurt, mulai dari susu sapi dan kambing, kuda dan unta, susu nabati dari kedelai, kecipir, almond, kacang tanah, santan, dan sebagainya. Variasi susu yang digunakan dapat berupa susu segar, susu cair dalam botol/karton, susu krim, susu skim, atau susu bubuk yang telah dicampur kembali dengan air. Meski demikian, sebaiknya tidak menggunakan susu kental manis karena terlalu banyak mengandung gula. Juga perlu diperhatikan bahwa ada produk susu cair dan bubuk yang mengandung pengawet, sehingga menghambat pertumbuhan bakteri yogurt. Jenis susu seperti demikian tidak dapat dijadikan yogurt.

Secara prinsip cara pembuatan yogurt dari susu nabati seperti susu kedelai sama saja seperti pembuatan yogurt lain, yaitu dengan menambahkan sejumlah bibit yogurt pada susu. Hanya saja, karena yogurt kedelai yang sudah jadi lebih sukar diperoleh, untuk pembuatan pertama terpaksa digunakan bibit yogurt dari susu sapi. Yogurt kedelai sedikit lebih encer daripada yogurt susu sapi. Pembuatan yogurt memerlukan suhu fermentasi yang kurang lebih konstan. Karena suhu ruangan tempat menyimpan yogurt lebih dingin (25°C) dibandingkan suhu fermentasi yang seharusnya (40–44°C), maka susu akan menjadi dingin. Suhu konstan dapat dilakukan dengan beberapa cara seperti alat pembuat yogurt listrik, menggunakan bola lampu dan kotak kardus atau menggunakan baskom dan air hangat. Cara yang paling praktis adalah yang pertama, karena di dalam alat tersebut terdapat pengukur suhu dan pemanas otomatis untuk menjaga suhu.

Apabila tidak ada alat pembuat yogurt, dapat digunakan cara yang kedua yaitu menggunakan bola lampu dan kotak kardus. Tempat yang berisi susu hangat yang telah diberi bibit yogurt dimasukkan ke dalam kotak kardus. Kemudian digantung sebuah bola lampu 60 watt di dekat wadah untuk menghangatkan susu. Suhu di dalam kotak kardus harus selalu diperiksa dengan termometer. Suhu optimum harus berada sekitar 42–45°C, yaitu 1–2°C lebih tinggi dari suhu fermentasi. Jika terlalu panas atau dingin, letak bola lampu dapat diatur (atau diganti ukuran wattnya). Jika cara pertama dan kedua tidak memungkinkan, dapat digunakan air penghangat. Susu hangat yang telah diberi bibit diletakkan dalam panci logam. Panci dimasukkan ke baskom atau ember yang lebih besar. Kemudian air hangat (42–45°C) dituangkan di sekeliling panci hingga mencapai tepian. Air yang digunakan dijaga jangan sampai masuk ke susu. Sekitar setengah jam sekali, air yang telah dingin dihangatkan kembali dengan menambahkan sedikit air panas. Suhu air selalu diukur dan diatur agar berkisar 42–45°C kembali. Kegiatan ini selalu diulangi dengan jangka waktu setengah jam kemudian hingga yogurt jadi. Penggunaan bibit serbuk diperlukan untuk memulai (starter) jika tidak tersedia yogurt jadi. Selanjutnya untuk beberapa kali pembuatan, dapat mengambil bibit dari yogurt hasil sebelumnya. Saat kualitas yogurt mulai menurun barulah kembali menggunakan bibit serbuk. Yogurt menggumpal disebabkan selain butiran lemak dan air, susu juga terdiri dari bola-bola protein kecil yang disebut misel. Letaknya berjarakan satu dengan yang lain. Jika suasana susu tidak asam, bertabrakan pun misel-misel ini berpantulan dan memisah kembali. Tapi saat susu menjadi asam oleh asam laktat dari bakteri yogurt, misel seolah-olah lengket dan ketika bertabrakan terbentuklah jaring-jaring yang memerangkap air. Dalam pengamatan, susu nampak menggumpal.

Secara umum ada dua jenis yogurt yang bisa dibuat yaitu setengah padat dan cair. Yogurt setengah padat bentuknya seperti tahu dan tidak diaduk. Untuk pembuatan yogurt setengah padat ini dibutuhkan susu yang kental, yang kandungan padatannya banyak, biasanya dengan menambahkan sejumlah susu skim padat ke dalam susu murni atau dengan membiarkan sebagian air dari susu menguap saat dipanaskan. Sedangkan yogurt cair, bentuknya encer dan dapat diminum karena kandungan padatan susunya lebih rendah. Malah yogurt cair ini dapat lebih encer dibandingkan susu murni.

Perbedaan komposisi antara yogurt padat, sedang, dan encer (cair)


Sumber : Widodo (2002).

Standard Nasional indonesia Yoghurt




(SNI 2981:2009)

Sebab-sebab kegagalan pembuatan yoghurt

Kegagalan pembuatan yogurt merupakan peristiwa yang umum terjadi. Sebab-sebab kegagalan dan cara mengatasinya dapat dilihat pada Tabel 3.4. Apabila masih mengalami kegagalan, maka perlu diperhatikan penggantian bahan yang dicurigai membuat gagal (baik dari susu atau bibitnya) dengan yang baru dari tempat atau sumber lain. Patut pula diperhatikan kebersihan.

Cara Mengatasi Yogurt yang tidak jadi


 



Cara Mengatasi Yogurt yang jadi tetapi memisah


 Sumber :(Widodo,2002)

Daftar Pustaka

Anonim. 2011. Lactobacillus : Learn How to Prevent Infections. http://www.vaxa/lactobacillus.cfm. Diakses tanggal 1 Desember 2011

Anonim. 2011. Penentuan Komposisi Biopolimer sebagai Bahan Pengeenkapsul. http://repository.ipb.ac.id/bitstream/handle/123456789/51162/F11adr_BAB%20IV%20Hasil%20dan%20Pembahasan.pdf?sequence=8. Diakses tanggal 30 Desember 2011

Cai H, Rodriguez BT, Zhang W, Broadbent JR, and Steele JL. 2007. Genotypic and penotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggest frequent recombination and niche specificity. Microbiology. Volume 153. P. 2655-2665.

Chan B, Bonilla L, and Velazquez AC. 2003. Using banana to generate lactic acid thorugh batch process fermentation. Applied Microbiology Biotechnology. Volume 63. p. 147-152

Evillya.2010.Lactobacillus casei.http://heartfoods.Wordpress.com/2011/06/23/. lactobacillus_casei Diakses tanggal 13 Desember 2011.

Krisno, A. 2011. Pemanfaatan bakteri lactobacillus casei dalam upaya menjaga kesehatan pencernaan manusia. http://aguskrisnoblog.wordpress.com/2011/01/11/pemanfaatan-bakteri-lactobacillus-casei-dalam-upaya-menjaga-kesehatan-pencernaan-manusia. diakses pada tanggal 13 Desember 2011

Septia I. 2010. Teknik pembutaan Susu Fermentasi (Yoghurt). http://itaseptia.blogspot.com/2010/05/susu-fermentasi-yoghurt.html. diakses pada tanggal 13 Desember 2011

Widodo W. 2002. Bioteknologi Fermentasi Susu. Universitas Muhamadiyah. Malang. Hal.

Widodo, Suparni, Wahyuni, Endang. 2003. Bioenkapsulasi Probiotik \ (Lactobacillus casei) dengan Pollard dan Tepung Terigu serta Pengaruhnya terhadap Viabilitas dan Laju Pengasaman. Fakultas Peternakan Universitas Gajah Mada. Yogyakarta.


KARAKTERISTIK LACTOBACILLUS CASEI

KARAKTERISTIK LACTOBACILLUS CASEI

Lactobacillus casei adalah bakteri Gram-positif, anaerob, tidak memiliki alat gerak, tidak menghasilkan spora, berbentuk batang dan menjadi salah satu bakteri yang berperan penting dalam pencernaan. Lactobacillus adalah bakteri yang bisa memecah protein, karbohidrat, dan lemak dalam makanan, dan menolong penyerapan elemen penting dan nutrisi seperti mineral, asam amino, dan vitamin yang dibutuhkan manusia dan hewan untuk bertahan hidup (Evillya, 2010).

Bakteri ini berukuran 0,7 – 1,1 x 2,0 – 4,0 µm dan merupakan bakteri yang penting dalam pembentukan asam laktat. Seperti bakteri asam laktat lain, Lactobacillus casei toleran terhadap asam, tidak bisa mensintesis perfirin, dan melakukan fermentasi dengan asam laktat sebagai metabolit akhir yang utama. Bakteri ini membentuk gerombolan dan merupakan bagian dari spesies heterofermentatif fakultatif, dimana bakteri ini memproduksi asam laktat dari gula heksosa dengan jalur Embden-Meyerlhof dan dari pentose dengan jalur 6-fosfoglukonat, fosfoketolase. pertumbuhan Lactobacillus casei pada suhu 15oC, dan membutuhkan riboflavin, asam folat, kalsium pantotenat, dan faktor pertumbuhan lain. Lactobacillus casei adalah spesies yang mudah beradaptasi, dan bisa diisolasi dari produk ternak segar dan fermentasi, produk pangan segar dan fermentasi. Dari segi industrial, Lactobacillus casei mempunyai peran dalam probiotik manusia, kultur starter pemroduksi asam untuk fermentasi susu, dan kultur khas untuk intensifikasi dan akselerasi perkembangan rasa dalam varietas keju yang dibubuhi bakteri (Evillya, 2010).

Lactobacillus casei ditemukan dalam susu fermentasi dan memiliki sifat bermanfaat bagi kesehatan manusia. Saluran pencernaan manusia terdiri dari Lactobacillus casei; flora alami yang mencegah berlebihnya suatu bakteri asam laktat yang tidak sengaja tertelan dan tinggal di salura pencernaan. Lactobacillus casei dapat mengurangi diare dan membantu memodifikasi mikroflora dalam tubuh. Lactobacillus casei menghasilkan DL-asam laktat dan amilase yang melengkapi pertumbuhan Lactobacillus acidophilus (Anonim,2011).

Sebagian besar Lactobacillus casei strain dapat memfermentasi galaktosa, glukosa, fruktosa, manosa, manitol, N-asetilglukosamin, dan tagatose. Kemampuan untuk memfermentasi laktosa kurang umum pada strain yang diisolasi dari bahan nabati dibandingkan pada yang berasal dari keju dan saluran pencernaan manusia. (Cai,2007)

Lactobacillus casei adalah penghasil asam laktat, diperoleh dengan fermentasi glukosa dan pembentukan laktat. Asam laktat merupakan asam hidroksi yang dapat diproduksi secara kimia dari asetaldehida dan hidrogen sianida atau dengan fermentasi mikroba. Hal ini digunakan untuk berbagai proses industri seperti kimia dan produksi biologis asam organik, penggunaan sebagai penyedap dalam makanan, pembuatan kosmetik, dan produksi plastik biodegradable (Chan, 2003).

Lactobacillus casei adalah spesies yang mudah beradaptasi, dan bisa diisolasi dari produk ternak segar dan fermentasi, produk pangan segar dan fermentasi. Dari segi industrial, Lactobacillus casei mempunyai peran dalam probiotik manusia, kultur starter pemroduksi asam untuk fermentasi susu, dan kultur khas untuk intensifikasi dan akselerasi perkembangan rasa dalam varietas keju yang dibubuhi bakteri. (Krisno, 2011)

Lactobacillus casei diduga dapat mengontrol organisme yang dapat menimbulkan efek toksik di dalam saluran pencernaan manusia, diantaranya yaitu Escherichia coli.
Lactobacillus casei adalah suatu jasad renik jenis temporer penghasil asam laktat, Lactobacillus casei dapat ditemukan di mulut dan di usus manusia. Selain itu bakteri Lactobacillus casei dapat menghalangi pertumbuhan H. pylori, dan membantu microflora di usus besar. (Krisno, 2011)

Media Pertumbuhan Lactobacilus casei

Lactobacillus casei dapat disimpan pada media de Man Rogosa Sharpe, Agar/MRS agar (Oxoid, 1982). Komposisi media MRS agar adalah sebagai berikut: Pepton 10 g, beef extract 10 g, yeast extract 5 g, K2HPO4 2 g, amonium sitrat 2 g, glukosa 2 g, sodium asetat 3H2O 20 g, MgSO4 7H2O 0,58 g, MnSO4 4H2O 0,28 g, agar 15 g, akuades 1000 ml (Widodo, 2003).

Nutrisi

Pertumbuhan Lactobacillus casei pada suhu 15oC, dan membutuhkan riboflavin, asam folat, kalsium pantotenat, dan faktor pertumbuhan lain. (Evillya,2010).


ASAM LEMAK OMEGA 3 DAN MANFAATNYA

ASAM LEMAK OMEGA 3 DAN MANFAATNYA

Asam lemak tidak jenuh ganda (poly unsaturated fatty acid, PUFA) omega-3 adalah asam lemak yang mengandung dua atau lebih ikatan rangkap, dengan ikatan rangkap terakhir terletak pada atom karbon ketiga dari ujung metil rantai asam lemak. Asam alfa linolenik (ALA, 18:3), asam eikosapentaenoik (EPA, 20:5), dan asam dokosaheksaenoik (OHA, 22:6) adalah asam lemak omega-3 yang paling umum .

Asam Lemak Omega 3 atau yang sering disebut Omega 3 merupakan sejenis lemak yang tidak diproduksi oleh tubuh, oleh karena itu kita harus memenuhinya dari makanan yang kita makan. Omega 3 dibutuhkan oleh tubuh untuk pembentukan membran sel sehat, meliputi otak kita dan sel sistem syaraf. Ketiga jenis Omega 3 ini sangat diperlukan oleh tubuh kita. EPA dan DHA bisa anda dapat dari ikan, seperti ikan makarel, sarden, tuna, dan salmon. Namun, jika anda tidak suka ikan apalagi yang goreng-gorengan, mungkin anda bisa mendapatkan Omega 3 dari buah-buahan. Tahu, kacang kedelai, kanola, kenari, dan biji rami merupakan sumber ALA. Masing-masing komponen memiliki fungsi yang berbeda dalam tubuh. DHA berfungsi sebagai jaringan pembungkus saraf yang berperan dalam melancarkan perintah saraf dan mengantarkan rangsangan saraf ke otak. EPA berfungsi dalam membantu pembentukan sel-sel darah dan jantung, menyehatkan sistem peredaran darah dengan melancarkan sirkulasi darah dan LNA berperan dalam menghasilkan energi dari makanan yang dikonsumsi dan kemudian membawanya ke sel-sel tubuh yang membutuhkannya. Dua asam lemak Omega-3 pada ikan adalah asam eikosapentaenoat (EPA, 20:5 ω-3) dan dokosaheksaenoat (DHA, 22:6 ω-3), sedangkan asam lemak linolenat (lna, 18:3 ω-3) jarang dijumpai, tetapi tersedia melimpah pada biji tumbuhan tertentu, misalnya pada minyak biji lobak, minyak biji kedelai dan biji kismis hitam (Nettleton, 1991 dalam Nettleton, 1995).

Sumber utama asam lemak omega-3 yang tersedia di pasar adalah minyak ikan , yang biasanya dikonsumsi dalam bentuk ikan yang dimasak, kapsul minyak ikan, atau makanan dengan bahan tambahan minyak ikan (Alonso dan Maroto, 2000). Namun demikian, minyak ikan sebagai sumber asam lemak omega-3 mempunyai keterbatasan. Pertama, ada kekhawatiran tentang penerimaan konsumen pada minyak ikan atau kapsul minyak ikan karena rasa dan baunya . Sebagai contoh, Kris-Etherton dkk. (2002) melaporkan bahwa mengkonsumsi lebih dari 1 g/hr minyak ikan menyebabkan rasa amis. Ada juga kekhawatiran pencemaran logam berat pada ikan dan minyak ikan. Environmental Protection Agency dan Food and Drug Administration merekomendasikan pada wanita hamil atau ibu menyusui dan bayi menghindari makan ikan dan kerang yang mungkin mengandung merkuri tinggi (EPA, 2004). Kekawatiran lain dengan penggunaan minyak ikan adalah kelanjutan sumber daya alam yang juga merupakan kekawatiran industri akuakultur. Sejak 1984 produksi minyak ikan masih stabil, dengan produksi rata-rata tahunan 13 juta ton, tetapi dengan peningkatan permintaan minyak ikan menyebabkan harga komoditas ini naik cepat. Sekarang, kirakira 50 % minyak ikan berasal dari industri akuakultur (Tidwell dan Allan 2001). Food dan Agriculture Organization United Nations meramalkan bahwa permintaan rninyak ikan global pada 2015 akan mencapai 145% dari kapasitas produksi global historis dan akan terus tumbuh (New dan Wijkstr6m, 2002). Oleh karena kekhawatiran dengan persediaan dan konsumsi ikan dan minyak ikan sebagai sumber asam lemak omega-3, telah dilakukan riset luas untuk mengembangkan sumber alternatif asam lemak yang penting ini . Mikroba seperti alga atau fungi adalah produsen utama asam lemak omega3 karena mempunyai lintasan biosintesa yang diperlukan. Mikroba telah secara ekstensif diteliti sebagai sumber potensial asam lemak. Asam lemak dari sumber mikroba dapat diekstrak dan digunakan sebagai komponen pada pangan yang diperkaya dengan omega-3 (Simopoulos, 1999) atau sebagai bahan tambahan pakan unggas dan pakan ikan kolam (Harel et aI., 2002). Studi terbaru juga telah meneliti tanaman tinggi dan hewan yang secara genetik diubah untuk menghasilkan asam lemak omega-3. Saat ini, asam lemak omega-3 dari mikroba masih alternatif yang lebih disukai, meski riset dalam pengembangan tumbuhan atau hewan transgenik untuk produksi omega-3 masih berlanjut. Banyak mikroalga mampu menghasilkan sejumlah besar asam lemak omega-3. Spesies seperti Nitzschia spp., Nannochloropsis spp., Navicula spp., Phaeodactylum spp., dan Porphyridium spp. telah dipelajari untuk produksi EPA. Sebagian besar spesies alga bersifat autotrof dan dan dapat dibiakkan dalam fotobioreaktor (Ward dan Singh, 2005). Hanya masalahnya, biaya untuk menumbuhkannya belum sesuai dengan skala industrinya. Beberapa jenis alga, seperti Nitzschia lavis, dapat menghasilkan EPA dalam kondisi heterotrof (Wen, 2001).



Omega 3 merupakan salah satu jenis lemak tidak jenuh yang sangat dibutuhkan tubuh. Sayangnya, tubuh tidak dapat menghasilkan sendiri jenis lemak ini sehingga kebutuhan akan lemak jenis ini harus didapatkan melalui asupan makanan. Para ahli gizi menyatakan bahwa tubuh membutuhkan sekitar 300 mg Omega 3 per harinya. Menurut American Heart Association, kita harus mengkonsumsi minimal dua porsi per minggu. Namun, takaran yang ideal masih belum jelas, karena kebutuhan tubuh setiap orang berbeda-beda. Ada baiknya anda bertanya pada ahli gizi atau dokter tentang dosis Omega 3 yang tepat, karena bila jumlahnya berlebihan dapat meningkatkan risiko stroke, atau perdarahan yang berlebihan pada beberapa orang.

Asam lemak Omega-3 mempunyai banyak manfaat kesehatan dan harus dimasukkan dalam diet manusia. American Dietetic Association and Dietitians of Canada secara resmi merekomendasikan 20 -35% dari energi harian harus berasal dari lemak makan , dengan penekanan pada konsumsi asam lemak omega-3 (Kris-Etherton dan Innis, 2007). American Heart Association merekomendasikan bahwa konsumen yang sehat mengkonsumsi lemak ikan per minggu dan mendorong pasien yang mengidap penyakit jantung koroner untuk mengkonsumsi 1 g/hr EPA dan OHA (Kris-Etherton dkk., 2002). Jumlah PUFA (polyunsaturated fatty acids) yang optimum untuk dikonsumsi adalah 6-10 % dari total energi yang dibutuhkan setiap hari. Kekurangan PUFA dapat menyebabkan risiko terkena kanker, menurunkan kekebalan tubuh, meningkatkan risiko arteriosklerosis, meningkatkan jumlah peroksida sehingga mempercepat proses penuaan dan meningkatkan risiko terkena batu empedu (Nurjanah, 2002).

Asam lemak Omega-3 apabila dikonsumsi berlebihan juga akan memberikan dampak negatif, antara lain menyebabkan badan berbau minyak ikan, menimbulkan gangguan pencernaan dan pendarahan pada saat luka, operasi, atau bila terserang mimisan akan lebih lama sembuhnya karena proses penggumpalan darah lamban (Mohamad, 2003 ).

Omega 3 beberapa tahun terakhir telah diteliti dan disorot oleh berbagai pihak sangat bermanfaat untuk kesehatan. Apa saja manfaat Omega 3? Ini mungkin menjadi pertanyaan bagi beberapa orang. Sebenarnya begitu banyak banyak manfaat kesehatan yang bisa anda kita dapatkan dari Omega 3 terutama untuk orang dewasa, anak-anak, wanita hamil dan orang yang sedang menderita penyakit. Berikut ini adalah beberapa manfaat yang bisa anda dapatkan dari mengkonsumsi Omega 3:

  1. Mudah lupa, susah mengingat sesuatu atau pikun merupakan penyakit yang sering diderita oleh para orang tua. Omega 3 sebagai makanan otak sangat penting untuk perkembangan membran sel pada sistem neurologis dari otak kita dan jalur sinyal. Hal ini telah terbukti secara ilmiah bahwa Omega 3 membantu perkembangan otak dan memori untuk anak-anak dan orang dewasa.
  2. Mencegah penyakit jantung. Penelitian menunjukkan bahwa Omega 3 dapat mencegah penyakit jantung dan  penyakit lain yang berhubungan dengan jantung, hal ini dikarenakan Omega 3 meningkatkan elastisitas arterial. Menurunkan resiko aritmia (detak jantung yang abnormal) dan juga tekanan darah tinggi.
  3. Menurunkan kadar kolesterol tinggi. Sebuah Penelitian mengatakan pengkonsumsian ikan yang kaya akan Omega 3 secara teratur terbukti meningkatkan kolesterol baik dan menurunkan kadar trigliserida (lemak dalam darah).
  4. Omega 3 sangat baik untuk kesehatan mata dan penglihatan secara umum, karena Omega 3 merupakan komponen utama dari retina.
  5. Membantu mengurangi depresi. Ini mungkin bermanfaat bagi orang-orang dengan depresi ringan. Dapat meningkatkan efektivitas pengobatan karena mempengaruhi otak dengan cara yang berbeda dari antidepresan, sehingga menggabungkan Omega 3 dengan obat antidepresan, akan  mengurangi depresi dengan cara yang berbeda, menurut David Mischoulon, MD, SEOrang profesor psikiatri dari Harvard Medical School.
  6. Mengurangi risiko pembekuan darah. Omega 3 memiliki sifat antikoagulan yang mempengaruhi kemampuan trombosit untuk membekukan darah, sehingga peredaran darah menjadi lancar dan juga terhindar dari penyumbatan pembuluh darah yang berakibat stroke.
  7. Untuk wanita hamil, Omega 3 telah terbukti bahwa Omega 3 sangat penting dalam perkembangan kesehatan fisik dan mental pada bayi .
  8. Omega 3 dapat mengurangi nyeri haid. Hasil Studi menunjukkan bahwa para wanita yang mengkonsumsi suplemen Omega 3 mengalami berkurangnya rasa nyeri pada saat haid. Kedua jenis Omega 3yaitu asam eicosapentaenoic (EPA) dan asam docosahexaenoic (DHA) diyakini mengurangi tingkat prostaglandin. Tingkat prostaglandin yang tinggi pada wanita selama menstruasi membuat kontraksi rahim meningkat dan kejang otot.
  9. Omega 3 memiliki sifat anti-inflamasi dan juga bermanfaat untuk kondisi seperti asma, psoriasis eksim, dan radang sendi.
  10. Omega 3 sangat baik untuk meningkatkan kesehatan anak secara keseluruhan dan perkembangan fisik dan mental. Hal ini terbukti bahwa anak-anak yang mengkonsumsi Omega 3 sebagai suplemen memiliki kemampuan baca yang lebih baik. Omega 3 juga bermanfaat bagi anak-anak yang menderita disleksia, dyspraxia dan ADHD.
  11. Omega 3 juga dapat mencegah penyakit Alzheimer.
  12. Penelitian juga menunjukkan bahwa Omega 3 dapat membantu orang dengan inflamasi perut dengan kondisi seperti IBS, Ulcerative colitis dan colitis.
  13. Orang yang menderita berbagai alergi juga dapat menambahkan suplemen Omega 3 ke dalam makanan mereka sehari-hari.
  14. Bermanfaat untuk diabetes. Sebuah studi penelitian menunjukkan Omega 3 dapat menurunkan trigliserida dan apoproteins, dan tidak ada efek samping pada kontrol glikemik.
  15. Sebuah penelitian yang cermat menunjukkan bahwa pasangan yang sedang merencanakan bayi atau sedang hamil atau sedang menyusui direkomendasikan untuk mengkonsumsi Omega 3 untuk membantu pertumbuhan bayi lebih cepat.
  16. Omega 3 juga berperan dalam tingkat penyerapan vitamin yang larut dalam lemak, seperti vitamin A, D, E dan vitamin K. Vitamin tersebut diperlukan oleh tubuh kita untuk melawan infeksi, menjaga kesehatan mata dan kulit, sirkulasi jantung, pembekuan darah dan kuat tulang.

Meskipun Omega 3 banyak memiliki manfaat kesehatan, tetapi sebuah studi yang dipublikasikan pada tahun 2006 oleh Journal of American Medical Association melaporkan bahwa analisis terhadap berbagai penelitian tidak menemukan bukti bahwa adanya hubungan yang signifikan antara asupan Omega 3 asam lemak dan timbulnya beberapa jenis kanker.

Depresi, kelelahan, kulit kering dan gatal, rambut dan kuku rapuh dan sakit sendi adalah beberapa gejala kekurangan Omega 3 dalam tubuh. Konsumsi Omega 3 yang berlebihan dapat meningkatkan risiko perdarahan dan stroke hemorrhagic. Jadi konsumsilah sesuai dosis yang tepat.


PEMBUATAN MIE INSTAN

PEMBUATAN MIE INSTAN

    Kondisi masyarakat pada saat ini lebih menyukai hal-hal yang instan. Tuntutan bagi mereka untuk lebih produktif dalam segala hal, memaksa untuk lebih efektif dan efisien dalam menggunakan waktu dan tenaga. Pada akhirnya, kondisi ini berdampak pada cara pemenuhan kebutuhan pangan mereka, sehingga terjadi perubahan budaya pangan ke arah konsumsi makanan instan sehingga fenomena ini menjadi peluang yang bagus bagi pihak industri pangan untuk memproduksi makanan instan. Salah satu jenis makanan instan tersebut adalah mie instan.

    Mie instan adalah makanan yang terbuat dari bahan dasar terigu. Bentuknya panjang dan elastis dengan diameter ± 2 mm. Cara memasaknya mudah, yakni dengan merebusnya di dalam air mendididh selama 3 menit saja. Meskipun mie instan belum dapat dianggap sebagai makanan penuh ( wholesome food ), namun mampu menyumbang energi untuk aktivitas tubuh. Karena dua alasan tersebut, yakni mie instan sebagai makanan cepat saji dan mampu menyumbang energi, semakin banyak masyarakat yang tertarik untuk mengkonsumsi mie instan sebagai pengganti nasi.

    Proses pembuatan mie instan meliputi persiapan bahan baku, pencampuran adonan, pengadukan, pelempengan, pencetakan, pengukusan, pemotongan, penggorengan, pendinginan, dan pengemasan.Pada proses tersebut tidak dimungkinkan adanya cemaran terhadap mikrobiologi produk baik oleh lingkungan, pekerja, maupun alat yang digunakan.Untuk mengetahui banyak sedikitnya jumlah mikrobiologi yang mencemari produk maka perlu dilakukan adanya analisa mikrobiologi terhadap produk akhir berupa produk jadi mie instan.

Bahan Baku

`a. Tepung terigu

    Bahan baku utama dalam pembuatan mie instan adalah tepung terigu, tepung tapioka dan air. Tepung terigu berasal dari gandum, dimana pada umunya gandum diklasifikasikan berdasarkan atas kekerasan dari gandum dan protein yang dikandungnya dan warna butir gandum itu sendiri (Kent, 1983).

    Tepung terigu merupakan hasil dari proses penggilingan gandum yaitu berupa endoperm halus yang terpisah dari kulit luar lembaga (Jones dan Amos, 1983). Menurut Kent (1983), gandum pada umumnya diklasifikasikan berdasarkan tesktur endosperm dan kandungan proteinnya. Tekstur endosperm berhubungan dengan pengadaan tepung untuk berbagi keperluan.

    Pemakaian tepung gandum sebagian besar untuk industri makanan seperti mie basah 32%, mie instan 20%, mie telor 8%, biskuit 29%, roti 15% dan hanya 5% dikonsumsi secara langsung, serta sebagian kecil dipakai untuk bahan baku industri non makanan antara lain perekat untuk industri plywood (Ramelan, 1999).

KomposisikimiaTepungterigudihitung per 100 gram bahan

Komponen

Kadar

Kadar air

12,00

Karbohidrat

74,5

Protein

11,80

Lemak

1,20

Abu

0,46

Kalori

340 kal

Sumber : Kent (1993)

    Pada perusahaan makanan yang berkualitas haruslah menggunakan tepung terigu yang baik dan sesuai dengan standart perdagangan. Syarat mutu tepung terigu yang telah ditetapkanya itu berdasarkan Standart Nasional Indonesia (SNI). Sehingga digunakan tepung terigu jenis hard flour (jenis kuat) dimana tepung terigu jenis ini memiliki kandungan gluten yang tinggi sehingga bisamenghasilkan adonan yang elastis dan tidak mudah putus, dengan standart kadar gluten minimal 9% dan kadar gluten maksimal 14%.

b. Tepung Tapioka

    Tepung tapioka memiliki daya serap air besar sehingga mempermudah proses dehidrasi yaitu granula pati kembali ke posisi ke posisi semula (Winarno, 1991). Tabel komposisi tepung tapioka dapat dilihat dalam tabel 5.

Komposisi Kimia Tepung Tapioka (per 100 gram bahan)

Komposisi

Jumlah

Kalori (kal)

Karbohidrat (g)

Protein (g)

Lemak (g)

Air (g)

Ca (mg)

Phospor (mg)

Zat Besi (mg)

Vitamin B (mg)

363.0

88.2

1.1

0.5

9.0

84.0

125.0

1.0

0.4

Sumber : Soedarmo dan Soediatmo (1987).

    Pada proses pembuatan mie, tepung tapioka berfungsi untuk meningkatkan kelembutan dan gelatinisasi mie. Pada pembuatan mie perlu diperhatikan perbandingan penyampuran antara tepung terigu dan tepung tapioka, semakin banyak penambahan tepung tapioka maka akan mempengaruhi kelembutan tekstur dan keranyahan dari produk mie itu sendiri dimana mie akan semakin renyah.

Granula-granula tepung tapioka terletak pada sel umbi akar, mempunyai bentuk sama dengan pati kentang. Granula tepung tapioka berukuran 3-35 mm dan mempunyai sifat birefringent yang kuat. Pati tapioka tersusun atas 20% amilosa dan amilopektin (Winarno, 1991).

    Tepung tapioka golongan yang mempunyai amilopektin tinggi, namun tapioka memiliki sifat-sifat yang mirip amilopektin. Diantar sifat-sifat amilopektin yang disukai oleh para ahli pengolahan pangan adalah sangat jernih. Tidak mudah mengumpal, mempunyai daya perekat yang tinggi dan tidak mudah pecah atau rusak serta bersuhu genetalisasi lebih mudah. Dalam bentuk pasta, amilopektin menunjukan kenampakan yang sangat jernih sehingga sangat disukai karena dapat mempertinggi panampilan produk akhir. Pamakaian pati dapat dihemat karena dalam konsentrasi rendah sudah dapat memberikan efek pemekatan yang cukup besar. Disamping itu pemakaian energi untuk gelatinisasi relatuv lebih rendah karena suhu gelatinisasi lebih rendah karena suhu gelatinisasi umbi ketela pohon relativ rendah (Tjokroadi Koesomo, 1986).

c. Air

    Penambahan air dalam adonan berfungsi untuk membentuk konsistensi adonan yang diinginkan. Umumnya air yang ditambahkan dalam pembuatan mie antara 30-35% (Bhusuk dan Rasper, 1994).

    Menurut Sunaryo (1985), suhu air yang disarankan untuk pembuatan mie sebesar -C, untuk mengaktifkan enzim amilase yang akan memecah pati menjadi dekstrin dan protease yang akan memecah gluten, sehingga menghasilkan adonan lembut dan halus. Jika suhu kurang dari C adonan menjadi keras, rapuh dan kasar. Jika suhu lebih dari C akan menghasilkan mie dengan tingkat elastisitas yang menurun dan kelengketannya meningkat.

d. Air Alkali

    Menurut Sunaryo (1985) air yang digunakan haruslah air lunak yang bersih artinya air yang memiliki persyaratan mutu air untuk industri yaitu air yang baik secara kimiawi dan mikrobiologis. Fungsi air alkali sebagai bahan tambahan membuat mie instan adalah: Media reaksi antara glutenin dan karbohidrat, larutan garam, membentuk sifat kenyal pada glutein

Natrium karbonat (), dan kalium karbonat () sebagai tambahan pada mie segar atau mie yang segera dimasak stelah dipotong. Penggunaan senyawa ini mengakibatkan pH lebih tinggi yaitu pH 7,0-7,5 , warna sedikit kuning dan flavor disukai oleh konsumen. Komponen-komponen tersebut berfungsi untuk mempercepat pengikat gluten, meningkatkan elastisitas dan fleksibilitas (garam fosfat) dan meningkatakan Sodium tripolifosfat () digunakan sebagai bahan pengikat air agar air dalam adonan tidak menguap sehingga adonan tidak mengalami pengerasan atau kekeringan dipermukaan sebelum proses pembentukan lembaran adonan. Perbaikan terhadap sifat-sifat adonan tidak menunjukan penghambatan terhadap α-amilase (Trenggono,dkk, 1990).

  1. Garam Dapur (NaCl)

    Menurut Sunaryo (1985), biasanya membuat mie jarang digunakan tambahan bumbu seperti gula, karena gula pada penggorengan (suhu tinggi) akan menyebabkan reaksi karamelisasi. Biasanya dalam pembuatan mie instan dapat ditambahkan garam. Garam yang digunakan biasanya NaCl dimana pada garam NaCl yang digunakan adalah kemurniannya. Fungsi garam itu sendiri adalah memberi rasa, memperkuat tekstur mie,membantu reaksi antara glutenin dan karbohidrat (meningkatkan elastisitas dan fleksibilitas mie), mengikat air.

     

    f. Minyak Goreng

        Minyak goreng pada proses pembuatan mie digunakan sebagai media penghantar panas. Penambahan lemak berfungsi untuk menambah kolesterol serta memperbaiki tekstur dan cita rasa dari bahan pangan. Warna minyak tergantung macam pigmennya. Bila minyak dihidrogenasi maka akan terjadi hidrogenasi karotenoid dan warna merah akan berkurang. Selain itu, perlakuan pemanasan juga akan mengurangi warna pigmen, karena karotenoid tidak stabil pada suhu tinggi sehingga minyak akan mudah tengik. Pada umumnya suhu penggorengan adalah – C. (Winarno, 2002).

    Bahan Baku Pembantu

    a. Seasoning

        terdapat beberapa macam seasoning antara lain bumbu (teriri dari garam, gula, MSG, flavor flavor, dll) minyak bumbu, bawang goreng, kecap, cabe bubuk, saus dan sambal pasta. Jenis seasoning pada setiap mie instan tergantung dari jenis mie dan flavonya. Pada produk mie polos tidak digunakan bumbu-bumbu tersebut.

    b. Ingredients

        Bahan tambahan makanan tersebut antara lain garam, guar gum, , potasium karbonat, gliserin, lesitin, tartrazine Cl 19140 (pewarna kuning), acidity regulator dan antioksidan TBHQ dicampurkan kedalam air alkali. Cara pencampurannya yaitu mixer VT (mixer alkali) diisi dengan air sampai bak kemudian ditambahkan garam, guar gum, dan potasium karbonat dengan jumlah tertentu semuanya dicampur terlebih dahulu di dalam mixer alkali, baru kemudian ditambahkan pewarna, lesitin dan gliserin.

    c. Kemasan

        Untuk kemasan mie instan polos digunakan kemasan plastik yang berbahan Polypropilen (PP) dengan ketebalan sesuai dengan produk yang dihasilkan (misalnya 0,06 mm)

        Hal-hal tercantum pada kemasan adalah sebagai berikut :

    1. Kemasan etiket/plastik : nama produk, nama dan alamat pabrik, tanda halal tanda SNI, cara pemasakan.
    2. Kemasan karton : nama dan alamat pabrik, merk dagang, jumlah isi, nomor pendaftaran, jumlah tumpukan maximum, kode produksi tanggal kadaluarsa, tanda SNI, tanda halal, cara penyimpanan dan penyajian, nutrition fact, netto, kode produksi, tanggal kadaluarsa.

    Proses Pembuatan Mie

            Proses produksi merupakan urut-urutan proses dari mulai persiapan bahan baku untuk diolah sampai menjadi produk akhir yang siap dipasarkan dengan kuantitas dan kualitas yang telah ditentukan.

            Bahan baku yang datang (dikirim oleh Suplier) sebelum masuk diperiksa dahulu oleh QC bahan baku. Alur penerimaan bahan baku tersebut dalam gudang werehouse adalah sebagai berikut:

    1. Pemeriksaan dokumen bahan baku.
    2. Pemeriksaan bahan baku dan di ambil sampelnya untuk dibandingkan dengan standar bahan baku yang telah ditentukan.
    3. Meletakkan bahan baku sesuai dengan ketentuannya disetiapmasing – masing bahan.
    4. Pemberisan number identity mengikuti standar yang telah ditentukan dan dilakukan setiap pallet ( kedatangan) dan jenis barang.
    5. Setelah pembongkaran selesai , dilakukan penerbitan Surat Penerimaan Barang (SPB) oleh bagian administrasi dan disahkan oleh kepala gudang.

    Alat – alat yang digunakan dalam proses pembongkaran yaitu palet, hand palet, forklifi, chainhoist, mesin pompa, dan blower dilakukan sesuai jenis bahan – bahannya. Pemeriksaan yang dilakukan oleh QC meliputi pengambilan sampel dan dibandingkan dengan standar serta dilakukan uji terhadap bahan – bahan pembantu lainnya.

        Proses produksi dimulai dari pencampuran sampai pada pengemasan. Proses-proses tersebut dilalui melalui delapan tahap yaitu : pencampuran (mixing), pengepresan (pressing), pembelahan (slitting), pembentukan untaian (waving), pengukusan (steaming), penggorengan (frying), dan pengemasan (packing).

  • Pencampuran (Mixing)

    Mixing adalah proses pencampuran bahan yang digunakan dalam pembuatan mie instan. Dengan tujuan untuk mendapatkan lama mixing yang sempurna. Karena mixing yang berlebihan akan merusak susunan gluten dan adonan akan semakin panas, dan apabila mixing kurang dapat menyebabkan adonan kurang elastis sehingga menyebabkan volume mie menjadi sangat kurang dan tidak sesuai dengan apa yang diinginkan. Bahan – bahan yang dicampur antara lain tepung terigu, tepung gaplek,tepung tapioka atau pati, alkali (maksimal 35%) dan air. Proses pencampuran dilakukan pada suhu 35-37 oC. Mixing dilakukan dengan mixer, selama 14 menit secara bertahap. Berikut ini tahapan mixing:

  1. Tahap awal

    Pada tahap ini terjadi pencampuran larutan alkali dengan kadar air 30-34%. Kadar air 30% untuk tekstur ringan seperti mie kremez, dan 34% untuk tekstur kuat seperti mie polos. Waktu pengadukan awal atau disebut sebagai pengadukan basah dilakukan selama 11 menit.

  2. Tahap akhir

Tahap akhir ini lebih kepada proses pengadukan secara cepat sehingga dihasilkan campuran yang homogen. Pengadukan akhir (pengadukan kering) dilakukan selama 3 menit.

Kadar air adonan berpengaruh terhadap proses gelatinisasi. Karena apabila kadar air terlalu tinggi akan menyebabkan untaian mie akan tersangkut di roll penghubung antara conveyor steamer dengan conveyor cutter sedangkan kadar air yang terlalu rendah menyebabkan adonan dan mie yang dihasilkan berwarna kuning pucat. Sehinggaa dalam hal ini dibutuhkan kadar air yang optimal agar didapatkan mie dengan kekenyalan yang optimal.

Faktor – faktor yang mempengaruhi proses mixing antara lain:

  1. Larutan alkali

    Larutan alkali yang ditambahkan berfungsi sebagai penetrasi partikel terigu. Sehingga semakin banyak larutan alkali yang terpenetrasi kedalam larutan pati, maka akan mendekati titik WHC-nya maka semakin baik.

  2. Waktu mixing

    Lama waktu mixing akan perpengaruh terhadap homogenitas dan suhu adonan.

  3. Temperatur adonan

    Temperatur adonan diatas 40 oC mengakibatkan adonan cenderung lembek dan lengket.

  • Pelempengan (Pressing) Dan Pembelahan (Slitting)

Pressing merupakan proses pembentukan lembaran adonan dengan ketebalan tertentu, sedangkan slitting merupakan proses pembelahan lembaran adonan menjadi pilinan mie dengan diameter tertentu.

Adonan mie dari mixer selanjutnya ditampung oleh feeder DCM (Dough Compoung Machine). Kemudian dipress oleh dough presser menjadi du lembar adonan. Dan selanjutnya ditangkap oleh roll press untuk dipress menjadi selembar adonan dengan ketebalan yang lebih rendah dari sebelumnya. Roll press berjumlah 6 pasang yang setiap pasang terdiri dari dua buah silinder dan masing – masing roll press berputar berlawanan arah. Ketebalan yang dihasilkan masing – masing roll press adalah:

  1. Roll press 1 dengan ketebalan 4,75 mm
  2. Roll press 2 dengan ketebalan 4,55 mm
  3. Roll press 3 dengan ketebalan 3,80 mm
  4. Roll press 4 dengan ketebalan 2,45 mm
  5. Roll press 5 dengan ketebalan 1,15 mm
  6. Roll press 6 dengan ketebalan 1,10 mm

Sehingga tidak terjadi penarikan atau penumpukan lembaran adonan ketika melewati atau menuju antar roll press.

Beberapa hal yang harus diperhatikan agar mie hasil sliting baik:

  1. Ketepatan pemasangan mangkok pemisah mie
  2. Kebersihan slitter
  3. Fungsi sisir mie harus baik
  • Pengukusan (Steaming)

    Steaming adalah proses pemanasan yang dilakukan dengan uap air panas (98oC) sebagai media penghantarnya. Untaian mie yang telah ditangkap oleh Waving Net Conveyor selanjutnya dilewatkan melalui steam box dengan menggunakan mesin Boiler.
Steaming digunakan untuk mendukung proses terjadinya gelatinisasi gluten. Dengan beberapa tahap proses gelatinisasi yaitu pembasahan, tahap gelatinisasi dan tahap solidifikasi. Pada tahap pembasahan mie bersifat mudah putus. Pada tahap gelatinisasi mie akan mengalami gelatinisasi dengan penetrasi panas ke dalam mie dan bersifat agak lentur. Pada tahap soliditasi permukaan mie terjadi penguapan dan membentuk lapisan film tipis sehingga menjadi halus dan kering yang menyebabkan sifat mie jadi solid.

    Tahap steaming prosesnya harus benar – benar baik dalam titik kritis, steaming yang kurang lama atau suhu yang kurang optimal menyebabkan gelatinisasi juga kurang optimal. Selai itu boiler harus benar – benar dipastikan bahwa tidak mengandung air karena hal itu akan menyebabkan tekstur mie menjadi lembek. Sebelum menuju kater mie dikeringkan terlebih dahulu dengan kipas angin untuk mengurangi kadar air dipermukaan mie akibat proses steaming. Hal ini penting karena apabila tidak dikeringkan akan menyebabkan mie tersangkut di bagian pemutar Waving net conveyor.

  • Pemotongan (Cutting)

    Cutting merupakan proses pemotongan untaian mie menjadi blog mie yang mempunyai ukuran tertentu dengan standar berat dan ukuran mie instan tergantung dari jenis mie. Mie yang telah dipotong kemudian dilipat dengan cangkulan sehingga menghasilkan 2 blok mie yang sama panjang dan simetris lipatannya. Selanjutnya didistribusikan ke dalam mangkok fryer yang berbentuk persegi yang dilengkapi dengan conveyor yang mampu menggerakkan melewati bak fryer untuk dilakukan proses Frying.

  • Penggorengan (Frying)

    Frying merupakan salah satu metode pengawetan bahan pangan. Prinsip frying adalah mengeringkan mie basah dengan media minyak goreng pada suhu tinggi sehingga diperoleh mie dengan kadar air dan minyak tertentu dan dipatkan mie yang matang, kering dan awet. Metode frying digunakan adalah deep fat frying dimana seluruh bagian terendam oleh minyak selama dilakukan proses frying dengan temperature 150 oC selama 3 menit.

Dalam proses frying berat mie menyusut dikarenakan air yang terkandung didalam mie diuapkan oleh panas dari minyak goreng. Penguapan terutama terjadi pada bagian terluar mie sampai 3% yang menyebabkan timbulnya kerenyahan.

Menurut anonymous (2005), pada saat frying juga terjadi denaturasi protein dan reaksi maillard. Denaturasi protein dapat meningkatkan daya cerna. Reaksi maillard merupakan reaksi antara gugus reduksi dari karbohidrat pada pati dengan gugus amino pada protein. Reaksi ini menimbulkan aroma yang khas dan perubahan warna yang cenderung lebih gelap dan berbentuk kaku.

Kematangan mie instan dipengaruhi oleh 3 faktor:

  1. Level minyak

    Level minyak goreng diukur dari penutup mangkok. Semakin tinggi level minyak goreng maka semakin lama pula prose frying. Standar level minyak adalah 4 cm.

  2. Lama waktu frying

    Lama waktu frying dipengaruhi oleh level minyak goreng dan kecepatan net fryer.

  3. Suhu minyak goreng

    Suhu minyak goreng dipengaruhi oleh persentase bukaan volve. Semakin besar bukaan volve maka sirkulassi minyak goreng semakin besar dan suhu juga semakin tinggi. Sirkulasi dilakukan dengan minyak agar tetap stabil.

  • Pendinginan (Cooling)

Cooling merupakan proses penurunan suhu mie instan, selama 1 menit dengan cara melewatkan mie dalam cooling box yang berisi fan. Udara untuk fan bersumber dari udara luar ruang produksi (udara bebas) sehingga fan dilengkapi filter untuk menyaring polutan. Suhu mie setelah cooling adalah kurang dari 45oC dan kemudian ditangkap oleh konveyor untuk selanjutnya dikemas.

  • Pengemasan (Packing)

Packing merupakan proses pembungkusan mie dan seasoningnya dengan kemasan, dengan meliputi dua tahap yaitu packing dengan etiket dan dengan karton.

    Menurut Kent(1983), pada pembuatan mie biasanya diusahakan tepung terigu hard yang dicampur bahan-bahan lain dan dibuat adonan yang kaku seperti pembuatan macaroni. Adonan ini kemiduan dilewatkan pada suatu roll pengepres untuk membentuk lembaran dengan tebal 1/8 inci atau kurang dengan komposisi kimia dari tepung terigu.

    Pada produksi mie instant faktor-faktor yang berpengaruh terhadap mutu produk akhir adalah persiapan bahan baku, penambahan larutan alkali, pengadukan, pengukusan (steaming), penggorengan (frying), pendinginan (cooling) dan pengemasan (packing).

    Bahan baku pembuatan mie adalah tepung terigu sebasar 200 kg, tepung tapioka 25 kg dan alkali 65 kg. Penambahan larutan alkali harus sesuai dengan standart, apabila air alkali yang ditambahkan terlalu banyak maka akan berpengaruh terhadap tekstur mie yang keras dan memiliki rasa yang tidak sesuai. Jadi larutan alkali sangat berperan dalam menentukan mutu mie instant yaitu sebagia pengatur pH untuk mempercepat proses gelatinisasi pati dan karena terdapat pada bentuk garam karbonat maka larutan alkali berfungsi sebagai zat pengembang adonan mie instant ( Anonymous, 1987).

    Pembuatan alkali adalah dengan melarutkan beberapa ingridient seperti garam-garam mineral, guargum dan pewarna dengan air dengan kedalaman tangki yang dilengkapi dengan agiator. Menurut Kent (1983), penggunaan air adalah sebesar 25-38% dengan temperatur air sebesar 32-38°C. Kegunaan air disini adalah untuk membentuk adonan. Selain itu digunakan air kie yang berfungsi untuk membuat adonan menjadi lebih ringan dan porus, disamping sebagai pengembang ( Anonymous, 1987).

    Untuk memperoleh hasil pengadukan yang baik yaitu adonan yang tidak pera dan tidak lembek, larutan garam tercampur rata dan adonan homogen, maka yang perlu diperhatikan adalah jumlah larutan alkali ditambahkan harus sesuai standart. Menurut Kent (1987), waktu pencampuran terbaik untuk pasta adalah 10-15 menit.

    Pencampuran adalah proses penyebaran suatu komponen ke komponen lain. Secara ideal proses pencampuran dimulai dengan mengelompokan masing-masing komponen pada beberapa wadah yang berbeda, sehingga masih tetap terpisah satu sama lain dalam bentuk komponen-komponen murni. Selanjutnya komponen-komponen tersebut disatukan dalam wadah baru (Earle, 1969).

    Pada tahap pencampuran protein mempunyai elastisitas dan kepegasan maksimum, artinya protein mengembang maksimal, artinya protein mengembang optimal, apabila pengaduan terus dilakukan maka akan terjadi pengenduran lebih lanjut, adonan menjadi lembek dan lengket karena pemutusan ikatan-ikatan disulfide karena pada proses moxing juga terjadi reaksi enzimatis (Lasztity. 1984).

    Pengepresan bertujuan untuk membuat pasta menjadi lembaran yang siap dipotong menjadi bentuk khas mie. Fungsi lain dari proses pelempengan yaitu agar proses geletinisasi pati yang terjadi pada proses proses pengukusan dapat berjalan bersama-sama. Pada proses pengepresan ini adonan yang dibuat dicetak menjadi rol-rol pengepresan pada mesin pengepres. Menurut Kent (1983), pengepresan ini dilakukan untuk membuat lembaran-lembaran setebal 1/8 inchi atau kurang. Pencetakan dilakukan dengan mengunakan silinder teralur. Lembaran yang dicetak menjadi pilinan atau utasan mie diletakan pada silinder mie beralur tersebut. Pengukusan dilakukan dengan tujuan agar pati yang ada dalam mie tergelatinisasi sehingga mie yang dihasilkan menjadi produk instant. Menurut Kent (1983) suhu tergelatinisasi pati gandum adalah 54,5-64°C.

    Pengeringan adalah proses pelepasan uap air dari bahan atau komoditi hasil pertanian sehingga mencapai kadar air tertentu dan terjadi keseimbangan antara kadar air bahan denga udara sekitar bahan (Kent, 1983).

    Pengeringan pada proses ini dilakukan dengan tujuan untuk menghilangkan sebagian air bebas yang ada pada bahan pangan sehingga pada saat penggorengan tidak terbentuk gelembung-gelembung kecil pada permukaan mie yang dihasilkan. Selain itu juga untuk mengurangi air yang ada pada mie sehingga mie tidak mudah terserang oleh kikroorganisme. Menurut Kent (1983) pengeringan dilakukan untuk mendapatkan mie yang berkadar air antara 10-11%.

    Tujuan utama penggorengan adalah untuk mematangkan mie instant sehingga dapat dimakan tanpa pemasakan lebih dahulu atau digunakan sebagai makanan ringan. Proses penggorengan inilah yang menyebabkan produk mudah menjadi rusak, karena minyak yang dikandung tersebut jika teroksidasi akan menghasilkan ketengikan, karena itu pengemasan yang digunakan harus rapat. Menurut Winarno (1997) fungsi minyak pada penggorengan adalah sebagai penghantar panas, memberi flavor dan menambah niolai gizi makanan.

    Menurut Djatmiko (1985) proses penggorengan adalah proses untuk mempersiapkan makanan dengan jalan memanaskan makanan dalam ketel yang berisi minyak. Menurut Winanrno (1991) suhu pengorengan yang umum digunakan adalah antar 177-221°C, sedangkan suhu yang baik ditinjau dari segi ekonomi Djatmiko (1985) adalah antara 183-199°C. Pengorengan dilakukan pada suhu yang agak rendah pada saat mie dimasukkan. Karena jika suhu penggorengan awal tinggi maka mie yang dihasilkan akan mudah pecah atau disebut crack.

    Proses pendinginan dilakukan secara perklahan yang bertujuan untuk menghindari terjadinya keretakan atau kehancuran mie instant. Menurut Kent (1983), perbedaan suhu yang tinggi akan menyebabkan mie instant retak atau crack.

    Tahap akhir dari industri mie adalah pengemasan. Menurut Djatmiko (1985) pengemasan merupakan suatu cara dalam memberi kondisi sekeliling yang tepat bagian bahan pangan. Secara nyata pengemasan berperan sangat penting dalam mempertahankan bahan dalam keadaan bersih dan higienis.

    Persyaratan dari bahan pengemasan antara lain harus mampu menghindari kerusakan mikrobiologis, fisis, mekanis, khemis maupun biologis juga mudah pada proses pengemasanya dan menyebabkan perubahan warna, cita rasa maupun perubahan lainya terhadap produk, serta beracun (Susanto, 1993).

2.4 Proses Gelatinisasi Pati

Pengertian gelatinisasi pati adalah menggambarkan pembengkakan dan proses kekacauan yang terjadi dalam granula-granula pati karena dipanaskan dengan adanya air (Fardiaz, 1996).

Menurut winarno (1991), walaupun tidak larut air, pati akan menyerap air dan akan mengembang sampai pada pembengkakan yang terbatas. Apabila suspensi pati dalam air dipanaskan, akan terjadi tiga tahap pengembangan granula. Tahap pertama terjadi di dalam air dingin, granula pati akan menyerap air sebanyak 20 %-25 % dari beratnya, tahap ini bersifat rversibel.

Pati merupakan komponen utama dalam tepung dan terdapat sebanyak 74-90% berdasarkan berat kering. Pati merupakan homopolymer glukosa dengan ikatan α-D-glikosidik. Dalam bentuk aslinya secara alami pati merupakan butiran-butiran kecil yang sering disebut granula.

Pati terdiri dari 2 (dua) fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan fraksi terlarut disebut amilopektin. Pada amilosa dan amilopektin terdapat gugus hidroksil. Semakin banyak gugus hidroksil pada molekul pati maka semakin besar kemampuan menyerap air.

Gelatinisasi pati gandum melalui 3 (tiga) tahap, yaitu:

  1. Pembengkakan terbatas pada suhu antara 60-70C termasuk gangguan pada ikatan yang lemah atau yang siap menerima perubahan bentuk.
  2. Selanjutnya granula membengkak dngan cepat pada suhu 80-90C, termasuk gangguan pada ikatan yang lebih kuat atau kurang dapat menerima perubahan bentuk.
  3. Jika pemanasan dilanjutkan, granula yang membengkak akan pecah.

Pengembangan granula pati disebabkan karena molekul-molekul air berpenetrasi masuk ke dalam granula dan terperangkap pada susunan molekul-molekul amilosa dan amilopektin (Winarno, 1997).

Faktor-faktor yang mmpengaruhi gelatinisasi pati antara lain:

  1. Jenis pati

    Jenis pati yang berbeda akan memiliki kekuatan mengontrol yang brbeda pula. Pati pada jagung yang sebagian terkandung pati murni mempunyai kekuatan mengontrol dua kali lebih besar dari pada tepung yang berasal dari endosperm.

  2. Konsentrasi pati

    Suhu gelatinisasi tergantung dari konsentrasi pati. Semakin kental larutan pati, suhu gelatinisasi akan semakin lambat tercapai dan pada suhu tertentu kekentalan tidak bertambah bahkan kadang-kadang turun.

  3. pH larutan

    pH larutan sangat berpengaruh terhadap pembentukan gel. Dimana pembentukan gel optimum tercapai pada pH 4-7, yaitu kecepatan pembentukan gel lebih lambat dari pada pH 10, tetapi jika pemanasan diteruskan viskositas tidak bertambah.

  4. Ukuran granula

    Pati yang mempunyai ukuran granula yang lebih besar cenderung mengembang pada suhu yang relative rendah.

  5. Kandungan amilosa

    Pada pati terdapat dua macm komponen yaitu amilosa dan amilopektin. Amilosa merupakan rangkaian lurus tidak bercabang, sedangkan amilopektin merupakan rantai polisakarida yang bercabang pada 1,6 α-Glikosida (Gregor,et al, 1980). Amilosa adalah salah satu komponen dari pati yang bertanggung jawab pada proses gelatinisasi disamping ukuran granula itu sendiri.

Dalam proses gelatinisasi ada dua komponen penting yang sangat berpengaruh yaitu panas dan air. Apabila cukup air dan panas, maka proses gelatinisasi dapat terjadi sempurna.

Peralatan yang digunakan

    Adapun dalam proses pembuatan mie instan diperlukan peralatan-peralatan mesin pengolahannya,diantaranya yaitu:

a.Screw

    Screw berfungsi sebagai perantara pemindahan bahan dan premixer. Prinsip kerja dari screw ini adalah dengan mendorong bahan seperti butiran, serbuk/tepung secara continue dengan conveyor ulir. Spesifikasi dari screw adalah:

Sumber daya : Motor elektrik 5 HP

Kapasitas    : 240,21 kg/3 menit

Material    : Stainless stell

Waktu proses    : 3 menit tiap 1 kali proses

b.Mixer

    Mixing dilakuakan dengan menggunakan mixer.Mixer berfungsi untuk menghomogenkan campuran,dengan prinsip kerja mencampur tepung melalui gerakan rotasi oleh blade yang digerakkan dengan sebuah motor. Spesifikasi dari mixer adalah

Kapasitas    : 350 kg terigu/23 menit

Material    : Stainless stell

Power        : 9/11 KW/ 380 V/50Hz

Model        : HM-200

Berat        : 1500 kg

Dimensi volum: 1,738 m3

    

Gambar1a. Mixer (Choiriah, 2005)     Gambar 1b. Mixer(Choiriah, 2005)

  1. Dough feeder

Dough feeder berfungsi mengistirahatkan adonan, meratakan air dan menurunkan suhu. Prinsip kerjanya adalah mensuplai adonan ke DCM dan diteruskan ke shapping folder. Spesifikasi dari dough feeder yaitu :

Kapasitas    : 500 kg/30 menit

Material    : Stainless stell

Power        : 2,2 KW/ 380 v/50 Hz

Model        : WL-200

Berat        : 100 kg

Dimensi volum    : diameter 2 m, tinggi 40 cm

Kecepatan putaran    : 9,5 rpm

Type    : horizontal dan bulat

  1. DCM (Dough compound machine)

DCM (Dough compound machine) berfungsi membentuk adonan menjadi lembaran sheet yang terdiri dari dua sel roll
press. Prinsip kerja dengan adanya tekanan dibentuk menjadi lembaran-lembaran tebal. Spesifikasi dari DCM (Dough compound machine) adalah :

 

Material    : Stainless stell

Power        : 34,4 KW/ 380 V/50 Hz

  1. Laminate Roller

Laminate Roller berfungsi membentuk lembaran adonan dengan prinsip kerja adanya tekanan dari roller atau pressing. Spesifikasi alatnya adalah :

Power        : 5,5 KW/ 380 v/50 Hz

Model        : FY-610-3

Berat        : 4700 kg


Gambar 2. Laminate roller (www.google.com)

  1. Continous Roller

Continous Roller berfungsi membentuk lembaran menjadi lebih tipis, dengan prinsip adanya tekanan antar roller/pressing. Spesifikasi alat :

Power        : 17,2 KW/ 380 v/50 Hz

Model        : LY-610-6

Berat        : 5500 kg


Gambar 3. Continous roller (www.google.com)

  1. Slitter

Befungsi untuk memotong lembaran adonan menjadi untaian mie yang selanjutnya menuju ke waving unit. Prinsip kerjanyan adalah membentuk untaian mie dengan ukuran mie yang standar yang diakukan oleh sepasang roller yang permukaannya bergerigi. Alat ini berjumlah 2.


Gambar 4. Slitter (www.google.com)

  1. Steamer

Berfungsi untuk memasak atau mengukus untaian mie dari waving
unit secara kontinyu dengan media panas berupa steam. Prinsip kerjanya adalah aliran uap dari boiler dengan tiga bagian utama yaitu bagian pembasahan, bagian gelatinisasi, dan bagian pengeringan, masing-masing dengan suhu yang berbeda. Jumlah alat 2 buah. Spesifikasi alat :

Model        : ZN – 10 – 3 – 74

Berat        : 2500 kg

Jenis        : Multi stage

Panjang     : 9 meter

Kapasitas    : 0, 43015 untaian mie per detik


Gambar5. Pengukus ( Steam Box )( Choiriah, 2005)

  1. Cutter

Berfungsi untuk memotong dan memisahkan untaian mie dengan tekanan. Prinsip kerjanya adalah karena adanya tekanan dari Roller. Jumlah alat 2 buah. Spesifikasi alat :

Power        : 5,5 KW/ 380 v/50 Hz

Model        : QK – 6 – 12

Berat        : 1300 kg

Kecepata     : 70 potong/menit

1 potong = 65 gram mie basah


Gambar 6. Pemotong dan Pembelah(Choiriah, 2005)

  1. Fryer

Berfungsi untuk menggoreng mie dengan metode deep fat frying untuk mengopltimalkan gelatinisasi sehingga diperoleh kematangan mie yang baik. Prinsip kerjanya adalah sirkulasi minyak goreng dengan pemanasan pada heat
exchanger (HE) secara kontinyu. Jumlah alat 2 buah. Spesifikasi alat :

Power        : 96,6 KW/ 380 v/50 Hz

Model        : YKM – 15 – Woil Fried Noodle Production Lines

Output        : 15000 / 8jam

Berat        : 1300 kg

Steam Consumption    : 2000kg/jam

Kecepatan    : 73 penggorengan / menit


Gambar 7.Friyer dan Peniris Minyak(Choiriah, 2005)

  1. Booler

Berfungsi untuk mendinginkan mie setelah frying. Prinsip kerjanya adalah aliran udara dari kipas dalam cooling box. Jumlah alat 2 buah. Spesifikasi alat :

Power        : 11,5 Kwh/ 380 v/50 Hz

Model        : FI – 13 – 140

Berat        : 3000 kg


Gambar 8. Mesin Pendingin(Choiriah, 2005)

  1. Packer

Berfungsi untuk mengemas mie dengan etiket tertentu dengan jumlah alat 6 buah. Prinsip kerjanya adalah melipat dan merekatkan bagian bawah kemasan dengan long sealer, penutup dan pemotongan dengan End sealer. Spesifikasi alat :

Power        : 4 Kw/ 380 v/50 Hz

Model        : DW – 8000

Berat        : 1500 kg


Gambar 9.     Mesin Pengemas(Choiriah, 2005)

  1. Product Conveyor

Berfungsi sebagai perantara langsung produk sebelum dikartonkan, jumlah alatnya 6 buah. Spesifikasi alat :

Power        : 0,37 Kw/ 380 v/50 Hz

Model        : CP 150 20

Berat        : 1000 kg


Gambar 10.Product Conveyor(www.google.com)

n.Control Sealing Machine

Berfungsi untuk mengemas mie dalam karton, yang berjumlah 2 buah. Spesifikasi alat :

Power        : 220 volt/50 Hz

Model        : 3ALF 50

 


Gambar 11. Control Sealing machine (www.google.com)

DAFTAR PUSTAKA

Admin. 2008. Sanitation for The Food Preservation Industries. Mc Graw Hill Company, Inc, New York

Ahyari, A. 1998. Manajemen Produksi (Pengendalian Mutu). Badan Penelitian Fakultas Ekonomi Universitas Gajah Mada. Yogyakarta

Anonymous. 1997. Standard Industri Indonesia. Departemen Perindustrian. Jakarta

Aptindo. 2000. Macam-Macam Tepung Terigu Merk Bogasari. http://www.bogasariflour.com

Astawan. 2003. Membuat Mie dan Bihun. Penebar Swadaya. Jakarta

Anonymous. 2005. Theory Instan Noodles. http://www.mostproject.org/ updatemasr06/Theory Instan Noodles.pdf. Asian

Anonymous. 2008. Good Manufacturing Practices. http://library.usu.ac.id/modules.php?op=noodled&name=Downloads&file=index&req=getit&lid=985

Bhusuk, W., V.F., Rasper. 1994. Wheat Production, Properties, and Quality. Blackie Academic and Professional.

BSN. 1996. SNI 01-3553-1996. Syarat-Syarat dan Pengawasan Kualitas Air Minum. Badan Standarisasi Nasional

Brown. 1992. A Model for Quantitating Energy and Degree of Starch Gelatization Based Water, Sugar, and Salt Content. J Food Science. 55:543-546

Buckle, K.A., R.A. Edwards, G.H. Fleet, and M. Wotton. Diterjemahkan oleh: Hari Purnomo dan Adiono. 1987. Ilmu Pangan. UI Press. Jakarta

Chinachcoti, P.M., M.P. Steinberg and R, Villera. 1990. A Model for Quantitating Energy and Degree of Starch Gelatization Based Water, Sugar, and Salt Content. J Food Science. 55:543-546

Choiriah, Siti. 2005. Laporan Praktik Kerja Lapang Proses pembuatan Mie instan di PT Tiga Pilar Sejaterah Food, tbk Sraagen Solo. FTP Universitas Brawijaya Malang

Fardiaz. 1989. Mikrobiologi Pangan I. Institut Pertanian Bogor. Bogor

Fennema, Q.R. 1990. Principle of Food Science : Food Chemistry. Marcel Dekker Inc. New York

Fire, F.L. 1991. Combustibility of Plastics. Van Nostrand Reinhold. New York

Golberg, J. Dan R. Williams. 1991. Biotechnology and Food Ingredients. Van Nostrand Reinhold. New York

Hotchkiss. 1995. A Model for Quantitating Energy and Degree of Starch Gelatization Based Water, Sugar, and Salt Content. J Food Science. 55:543-546

Kim. 1996. The Science of Food. John Willey and Sons, Inc. New York

Lab. Teknik dan Manajemen Lingkungan IPB. 2007. Persyaratan-Persyaratan Air Minum Kep. Menkes RI No.907/Menkes ri/2002. http://bima.ipb.ac.id/html_atsp/baku_ mutu.html

Lusas and Roney. 2001. Food Experimental Perspectives 4th e.d. prentice Hall Upper Saddle River. New Jersey

Makfoeld, D. 1997. Deskripsi Pengolahan. Departemen Ilmu dan Teknologi makanan. FTP-UGM. Yogyakarta

Matz, S.A. 1992. Bakery Technology and Engineering 3th edition. Van Nostrand reinhold. New York

Medikasari. 2000. Sifat Fisik dan Sensoris Mie Kering dari Berbagai tepung Terigu dan formula Kansuib. Skripsi Fak. TP UGM. Yogyakarta

Mudjayanto. E.S. dan Yulianti L.N. 2004. Membuat aneka Roti. Penebar swadaya. Jakarta

Muyasaroh, Silvi. 2002. Laporan Praktik Kerja Lapang Proses Pembuatan Mie Instan di PT I Tsun Food Indonesia. FTP Universitas Brawijaya Malang

Nicholson, J.W. 1997. The Chemistry of Paper. The Royal Society of Chemistry. UK

Palupi. 2005. Dasar-Dasar Biokima. UI Press. Jakarta

Sofyan, F. 1992. RBD Palm Oil sebagai Noodle Frying Oil. PT. Sanmaru Food Mfg.Co.Ltd. manufacturing Departement. Jakarta

Susanto, t. dan B. Saneto. 1994. Teknologi pengolahan Hasil Pertanian. PT. Bina Ilmu. Surabaya

Tranggono, Sutardi, Haryadi, Suparmo, A. Murdiati, S. Sudarmadji, K. Rahayu, S. Naruki, dan M. Astuti. 1990. Bahan Tambahan Makanan. PAU Pangan dan Gizi Universitas Gadjah Mada. Jogjakarta


Manfaat Limbah Pisang

Manfaat Limbah dari Pisang


Pisang
bisa disebutkan sebagai buah kehidupan. Kandungan kalium yang cukup banyak terdapat dalam buah ini mampu menurunkan tekanan darah, menjaga kesehatan jantung, dan memperlancar pengiriman oksigen ke otak. Pisang telah lama akrab dengan masyarakat Indonesia, terbukti dari seringnya pohon pisang digunakan sebagai perlambang dalam berbagai upacara adat. Pohon pisang selalu melakukan regenerasi sebelum berbuah dan mati, yaitu melalui tunas-tunas yang tumbuh pada bonggolnya. Dengan cara itulah pohon pisang mempertahankan eksistensinya untuk memberikan manfaatkan kepada manusia. Filosofi tersebutlah yang mendasari penggunaan pohon pisang sebagai simbol niat luhur pada upacara pernikahan.

Iklim tropis yang sesuai serta kondisi tanah yang banyak mengandung humus memungkinkan tanaman pisang tersebar luas di Indonesia. Saat ini, hampir seluruh wilayah Indonesia merupakan daerah penghasil pisang.

Pisang mempunyai banyak manfaat yaitu dari mulai mengatasi masalah kecanduan rokok sampai untuk masalah kecantikan seperti masker wajah, mengatasi rambut yang rusak dan menghaluskan tangan.

Selain buahnya pisang jarang dimanfaatkan, seperti batang, bonggol, kulit dan jantungnya. Tetapi seiring dengan bertambahnya ilmu pengetahuan dan teknologi maka banyak yang bisa dimanfaatkan dari limbah-limbah yang jarang dimanfaatkan oleh masyarakat sehingga akan meningkatkan kualitas dari limbah tersebut dan menambah nilai ekonomi dari limbah tersebut.

Reuse

Contoh penanganan limbah pisang dengan cara guna ulang (Reuse) ialah

a. Kulit Pisang Ambon Bisa Digunakan Untuk Pengobatan. `

Pisang ambon sangat bermanfaat bagi tubuh kita. Selain mengandung vitamin C, pisang ambon juga mengandung serat tinggi yang berfungsi melancarkan saluran pencernaaan, sehingga buang air besar pun jadi lancar. Ternyata, selain buahnya, kulit pisang ambon pun berguna untuk mengobati bercak-bercak hitam agak kasar ( misalnya bekas cacar) pada kulit. Caranya, gosokkan kulit pisang ambon bagian dalam pada kulit yang terdapat bekas cacar. Biarkan beberapa saat, setelah itu cuci dengan air hangat. Lakukan cara ini secara rutin dan penuh kesabaran. Hasilnya, kulit akan kembali mulus seperti sediakala

b. Bonggol pisang untuk obat dan makanan

Air bonggol pisang kepok dan klutuk juga diketahui dapat dijadikan obat untuk menyembuhkan penyakit disentri, pendarahan usus, obat kumur serta untuk memperbaiki pertumbuhan dan menghitamkan rambut. Sedangkan untuk makanan, bonggol pisang dapat diolah menjadi penganan, seperti urap dan lalapan

c. Batang Pisang yang dijadikan pakan ternak

Batang pisang yang tidak dipakai biasanya langsung dibuang atau untuk menahan laju air tapi selain itu batang pisang juga bisa digunakan untuk pakan ternak karena kandungan yang terkandung di dalam batang pisang dapat meningkatkan gizi pada ternak tersebut sehingga akan meningkatkan kualitas dari ternak tersebut

Recycle

Contoh penanganan limbah pisang dengan cara daur ulang (recycle) ialah

a. Cuka Kulit Pisang

Mula-mula kumpulkan kulit pisang sebanyak 100 kg dan lakukan proses produksi selama 4-5 minggu. Kebutuhan bahan-bahan lain mencakup: 20 kg gula pasir, 120 gr ammonium sulfit (NH4)2S03, 0,5 kg ragi roti (Saccharomyces cerevisiae) dan 25 liter induk cuka (Acetobacter aceti).

Cara rnembuatnya, kulit pisang dipotong-potong atau dicacah, lalu direbus dengan air sebanyak 150 liter. Saring dengan kain dalam stoples. Berdasarkan uji lapangan, bahan awal kulit pisang yang direbus itu akan menghasilkan cairan kulit pisang kira-kira 135 liter, bagian yang hilang 7,5 kg, dan sisa bahan padat sekitar 112,5 kg. Setelah disaring ke stoples, cairan kulit pisang ini perlu ditambah ammonium sulfit dan gula pasir.

Langkah berikut, didinginkan dan tambahkan ragi roti. Biarkan fermentasi berlangsung satu minggu. Hasilnya disaring lagi. Dari 135 liter cairan kulit pisang setelah difermentasi dan disaring menjadi 130 liter larutan beralkohol, dan lima liter produk yang tidak terpakai. Pada larutan beralkohol itu ditambahkan induk cuka, dan biarkan fermentasi berlangsung selama tiga minggu.

Selanjutnya, hasil fermentasi larutan beralkohol dididihkan. Nah, dalam kondisi masih panas, cuka pisang dimasukkan ke dalam botol plastik. Lalu segera ditutup dan disimpan dalam temperatur kamar. Biasanya pemasaran cuka pisang dikemas dalam plastik berukuran 40 ml, 60 ml, atau 80 ml. Jika dihitung, dari 100 kg kulit pisang akan diperoleh sekitar 120 liter cuka pisang.

b. Nata dari Kulit Pisang

Potensi buah-buahan lokal Nusantara untuk dikembangkan sebagai bahan makanan sudah terbukti. Salah satu buah tersebut yakni pisang. Buah ini selain bisa dimakan saat segar juga bisa dibuat berbagai jenis makanan, seperti ceriping, dan sale.

Sebuah penelitian terhadap buah pisang dilakukan tiga dosen Universitas Negeri Yogyakarta. Sekali lagi untuk menjadikan pisang sebagai produk olahan yang disukai masyarakat dengan tetap memiliki kandungan gizi.

Yang menarik, penelitian yang dilakukan Das Salirawati MSi, Eddy Sulistyowati Apt MS, dan Retno Arianingrum MSi yang semuanya adalah dosen Jurusan Pendidikan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam adalah bukan dilakukan pada buahnya, tetapi pada kulitnya. Penelitian ini sukses menjadikan kulit pisang-yang selama ini lebih banyak dibuang-menjadi nata.

Nata adalah serat yang berbentuk seperti gel yang dibuat dengan memanfaatkan kerja bakteri Acetobacter xylinum. “Selama ini masyarakat telah mengenal produk nata de coco atau nata yang dibuat dari air kelapa. Nata dari kulit pisang sebenarnya sama dengan nata de coco, bedanya nata pisang dibuat dari bahan dasar kulit pisang,” katanya, Rabu (8/3).

Ide membuat nata dari kulit pisang, karena terinspirasi dari penelitian sebelumnya yang bisa membuat nata dari buah pisang. “Kenapa kemudian memilih kulit pisang karena selama ini kulit pisang tidak termanfaatkan dan hanya dibuang begitu saja. Padahal kulit pisang ini banyak ditemui di sekitar kita, antara lain di tempat-tempat orang jual gorengan,” ucapnya.

Proses pembuatan nata kulit pisang yang pertama adalah mengerok kulit bagian dalam buah pisang. Hasil kerokan itu kemudian diblender dan dicampur air bersih dengan perbandingan 1 : 2, lalu disaring guna mendapatkan air perasan. Setelah itu ditambahkan asam cuka biasa dengan ukuran 4-5 persen dari volume air perasan. Jika menggunakan asam cuka absolut maka cukup 0,8 persen. Ditambahkan juga pupuk ZA sebanyak 0,8 persen dari larutan, dan gula pasir sebanyak 10 persen. Bahan-bahan tersebut dicampurkan untuk kemudian dipanaskan sampai mendidih.

“Asam cuka dan pupuk ZA berfungsi untuk media hidup bagi bakteri Acetobacter xylinum. Bakteri ini membutuhkan nitrogen dari pupuk ZA dan keasaman dari cuka. Acetobacter xylinum inilah yang nanti akan membentuk nata,” ujar Das.

Setelah mendidih lalu dituangkan dalam cetakan-cetakan. Dengan ketinggian cairan adonan lebih kurang 2-3 cm di setiap cetakan. Setelah dingin, dimasukkan bakteri Acetobacter xylinum-yang bisa dibeli dalam bentuk cairan-sebanyak 10 persen dari campuran. Sebelum memasukkan bakteri, adonan harus benar-benar dingin, sebab kalau masih panas bakteri akan mati. Setelah itu, cetakan ditutup dengan kertas koran. Ini supaya udara tetap bisa masuk melalui pori-pori kertas. Setelah dua minggu, cetakan baru boleh dibuka. Adonan pun akan berubah menjadi berbentuk gel.

Nata lalu diiris-iris, dicuci, dan diperas sampai kering. Untuk selanjutnya direbus lagi dengan air lebih kurang dua kali rebusan. Ini berfungsi untuk menghilangkan aroma asam cuka. Setelah selesai, nata bisa dicampur dengan sirop atau gula sesuai selera. Campuran rasa diperlukan karena nata berasa tawar. Nata dari kulit pisang pun siap disajikan untuk minuman, maupun makanan kecil lain. Diketahui dari 100 gram nata kulit pisang mengandung protein sebanyak 12 mg. Das Salirawati mengungkapkan, penelitian itu akan dilanjutkan untuk mencari ketebalan nata yang paling optimal. Dari percobaan awal, diketahui dari ketebalan cairan adonan dua cm diperoleh nata lebih kurang 1,5 cm. Masyarakat dipersilakan jika ingin mencoba membuat nata dari kulit pisang. “Ini bisa untuk usaha alternatif skala kecil,” tuturnya. (RWN)

c. Roti dari Kulit Pisang

Kulit pisang kerap dibuang begitu saja di sembarang tempat. Jika dibuang sembarangan, kulit pisang bisa membuat orang tergelincir. Namun, tiga mahasiswa Biologi ITS, tak pernah menganggap remeh kulit pisang. Karena setelah diteliti terbukti kulit pisang memang tak bisa dianggap barang remeh.

“Kulit pisang yang sering dianggap barang tak berharga itu, ternyata memiliki kandungan vitamin C, B, kalsium, protein, dan juga lemak yang cukup,” kata Sulfahri, salah satu dari 3 peneliti itu. Melihat kandungannya yang cukup tinggi, ia bersama dua rekan mencoba membuat penganan dari bahan kulit pisang itu.

“Semula, kami hanya memproduksi keripik kulit pisang, namun lama-kelamaan timbul ide untuk membuat tepung dari kulit pisang,” katanya. Mahasiswa angkatan 2007 itu mengatakan tepung pisang itu akhirnya digunakan sebagai bahan baku kue bolu. Meski berkali-kali gagal, namun akhirnya mereka menemukan formula yang pas untuk membuat bolu dari kulit pisang.

“Kalau dihitung lebih dari 50 kali, namun kami sekarang sudah puas dengan resep bolu yang kami miliki,” katanya. Kulit pisang yang cocok dibuat tepung adalah jenis pisang raja, karena kulit pisang raja lebih tebal dibandingkan jenis pisang lainnya.

Karya Sulfahri dan dua rekannya itu merupakan salah satu karya inovatif yang terpilih dalam penyaringan untuk “Biological Opus Fair” yang digelar di Plaza dr Angka ITS Surabaya pada 17 dan 18 April 2008.

Delapan produk inovatif yang dipamerkan adalah karya bertajuk “Pemanfaatan Kulit Buah Pisang Raja (Musa paradisiaca sapientum) sebagai Bahan Dasar Pembuatan Kue Bolu” (karya Sulfahri dari Jurusan Biologi ITS Surabaya), dan “Water Electric Light Trap (WEL-T) sebagai Pengganti Pestisida dalam Upaya Peningatan Produksi Pangan yang Ramah Lingkungan” (karya Resti Afiandinie dari Jurusan Teknik Kimia ITS).

Karya lain adalah “Pendayagunaan Talok (Muntingia calabura Linn) sebagai Salah Satu Sumber Alternatif Baru dalam Dunia Pangan” (Fitri Linda Sari dari Universitas Muhammadiyah Malang), kemudian “Potensi Suweg (Amorphophallus campanulatus Bl.) sebagai Alternatif Bahan Pangan (Upaya Menggali Potensi Pangan Lokal)” (Riana Dyah Suryaningrum dari Universitas Muhammadiyah Malang).

Disamping itu terdapat karya lain, seperti “Konversi Limbah Padat Menjadi Produk Ramah Lingkungan” (Sulistiono Ningsih dari Jurusan Biologi di Universitas Jember), “Pemanfaatan Mikroalga (Fitoplankton) sebagai Subtitusi Sumber Bahan Bakar Premium” (Abdul Azis Jaziri dari Jurusan Perikanan di Universitas Brawijaya Malang), “Diversifikasi Dioscorea Flour sebagai Sumber Alternatif Pangan” (Zainal Arifin dari Jurusan Biologi ITS Surabaya), kemudian “Pemanfaatan buah dan daun cersen/talok sebagai keripik dan dodol” (Ria Hayati dari Jurusan Biologi ITS Surabaya).

Tak berbeda dengan Sulfahri, Zaenal Arifin juga mencoba membuat diversifikasi pangan dari bahan umbi uwi. “Umbi yang bernama latin dioscorea alata itu ternyata dapat menjadi bahan pangan yang aman bagi penderita diabetes. Kadar gula uwi itu rendah, tapi karbohidratnya tinggi,” kata mahasiswa jurusan Biologi ITS itu.

Pengolahan uwi menjadi tepung itu pun tidak memerlukan proses yang rumit, bahkan cukup menggunakan metode tradisional.”Saya buat dari dua macam uwi, uwi putih dan juga uwi ungu yang sama-sama berkadar gula rendah. Uwi diparut kasar, kemudian direndam dengan air kapur untuk memisahkan parutan dengan getahnya. Air getah uwi itu bisa untuk pestisida yang ramah lingkungan,” ucapnya.

Parutan yang sudah dikeringkan, katanya, dapat langsung diolah menjadi tepung. “Tepung dari uwi ini dapat digunakan sebagai bahan baku berbagai macam penganan, seperti kue dan mie. Rasa tepungnya sendiri tawar, jadi gampang divariasikan,” katanya.

d. Dendeng Jantung Pisang

Tanaman pisang tumbuh baik dan dibudidayakan di seluruh wilayah Indonesia. Jenis pohon mudah ditanam dan hampir setiap rumah di pedesaan memiliki pohon pisang ini.

Setiap petani dapat dipastikan menanam pisang, meskipun di antaranya hanya menanam pisang pada pekarangan.

Tak ada ruginya menanam pohon ini. Apalagi, seluruh bagian dari tanaman pisang dapat dimanfaatkan untuk kebutuhan rumah tangga mulai dari daun, buah, sampai bonggol pohonnya.

Buah dan bagian tanaman pisang pun bisa diolah menjadi berbagai macam jenis makanan olahan. Salah satu makanan olahan dari bagian tanaman pisang adalah dendeng jantung pisang.

Untuk membuat dendeng jantung pisang perlu disiapkan sejumlah bahan, meliputi empat buah jantung pisang, satu sendok makan ketumbar, 50 gr ikan teri, 10 siung bawang merah, dan empat siung bawang putih. Sedangkan kebutuhan peralatan terdiri atas pisau, kukusan, penumbuk, dan tampah.

Cara membuatnya, ambil jantung pisang yang masih segar. Buang kelopak bagian luar hingga tampak kelopak dalamnya berwarna putih kemerah-merahan. Jantung pisang tersebut direbus sampai lunak. Lalu ditumbuk sampai halus.

Selanjutnya, bumbu-bumbu ditumbuk lalu dimasak dalam wajan. Setelah itu, tumbukan jantung pisang dimasukkan ke dalam wajan berisi bumbu. Diaduk-aduk sampai merata, lalu tambahkan gula merah. Jika sudah masak, silakan diangkat dan segera dicetak di atas tampah. Jadilah dendeng jantung pisang yang telah dicetak. Dendeng tersebut dijemur selama 2-3 hari hingga kering. Lantas, digoreng hingga masak, dan akhirnya dikemas dalam kantong plastik.

e. Keripik Bonggol Pisang

Kebutuhan bahan untuk membuat keripik bonggol pisang terdiri atas bonggol pisang, natrium bisulfit, garam, bawang merah, bawang putih, minyak goreng, merica, dan air. Sedangkan piranti yang mesti disiapkan adalah pisau, baskom, wajan, ember, kompor, talenan, dan alat penunjang lainnya.

Cara membuatnya, ambil bonggol pisang, lalu kupas kulit luarnya, dan dicuci dengan air bersih. Bonggol diiris menjadi irisan-irisan tipis sekitar 0,5 cm. Irisan bonggol direndam dalam larutan natrium bisulfit satu persen selama 2-3 menit (Pedomannya: 1 gram natrium bisulfit dicairkan ke dalam 1 liter air). Setelah direndam, irisan bonggol ditiriskan.

Selanjutnya, bumbu-bumbu ditumbuk sampai halus, lalu dimasukkan ke dalam baskom dan tambahkan sedikit air. Rendam irisan bonggol dalam baskom yang berisi bumbu, lalu diaduk sampai rata, dan biarkan sekitar 5-10 menit agar bumbunya meresap.

Irisan bonggol yang telah dibumbui itu digoreng, sambil dibolak-balik hingga kematangan merata. Angkat dan tiriskan. Akhirnya, jadilah keripik bonggol pisang yang dikemas dalam kantong plastik.

f. Batang Pisang Sebagai Bahan Dasar Kertas Daur Ulang

Batang pisang juga dapat di olah menjadi kertas, yaitu setelah mengalami proses pengeringan dan pengolahan lebih lanjut. proses pembuatan kertas dari bahan batang pisang pertama-tama yang harus dilakukan adalah, batang pisang tadi dipotong kecil-kecil dengan ukuran berkisar 25 cm, lalu di jemur di bawah terik matahari hingga kering. Setelah batang pisang tadi kering proses berikutnya adalah dengan cara direbus sampai menjadi lunak, namun pada saat proses perebusan sebaiknya di tambah dengan formalin atau kostik soda maksudnya adalah di samping untuk mempercepat proses pelunaan juga untuk menghilangkan getah-getah yang masih menempel pada batang pisang tadi, pada proses berikutnya batang pisang yang sudah lunak tadi disaring dan dibersihkan dari zat-zat kimia tadi baru kemudian di buat bubur ( pulp) dengan cara di blender. Baru kemudian dicetak menjadi lembaran-lembaran kertas.

Reduce

a. Kulit Pisang Menyimpan Tegangan Listrik

Siapa yang menyangka kulit pisang bisa dijadikan pengganti batu batterai. Cara pembuatannya pertama kulit pisang dan jeruk di buat jus, apabila tidak ada alat jus atau blender maka cukup dihancurkan atau di aduk hingga halus kemudian dicampur dengan air secukupnya. Setelah itu di buat sel elektrokimia dengan mengambil gelas kimia lalu larutan jus tadi ditaruh didalam gelas tersebut. Kemudian dibuat elektroda-elektroda yang terbuat dari Cu dan Zn. Tembaga dan seng disambung dengan kabel kemudian dibantu dengan tutup dari gabus dibuat variasi biar kelihatan menarik.

Satu sel adalah satu wadah atau satu gelas kimia yang berisi 2 elektroda dan 1 tutup. Kita ukur V dan I nya, V= Voltase, I= Amper setelah itu di aplikasikan atau dihubungkan kabel tersebut dengan benda percobaan. Aplikasi yang paling sederhana dan mudah diamati adalah kalkulator dan jam digital, begitu disambungkan ternyata kalkulator dan jam tersebut bisa hidup normal seperti dihubungkan pakai batu batterai

Dibandingkan dengan membeli batu batere, dengan menggunakan limbah kulit pisang sebagai pengganti batu batere akan mengurangi limbah dari pisang selain itu akan meningkatkan nilai jual dari kulit pisang itu sendiri dan akan mengurangi penggunaan batu batere yang kurang ramahh lingkungan

b. Daun pisang sebagai pembungkus makanan

Daun pisang digunakan untuk membungkus makanan karena dengan membungkus makanan dengan menggunakan daun pisang akan menambah cita rasa dalam makanan tersebut contoh bahan makanan yang sering menggunakan daun pisang sebagai pembungkus adalah tempe. Selain itu daun pisang juga oleh masyarakan (sekitar tahun 1945) biasa digunakan untuk membungkus rokok

Sehingga dapat disimpulkan bahwa dengan menggunakan daun pisang sebagai pembungkus makanan akan mengurangi penggunaan plastic yang tidak ramah lingkungan karena yang sudah kita ketahui bahwa plastic tidak bisa terurai dan akan berdampak pada pemanasan global.

c. Kulit pisang untuk semir sepatu

Bagian dalam dari kulit pisang mengandung potassium yang merupakan bahan penting yang terdapat dalam semir sepatu yang ada di pasaran. Setelah menggunakan kulit pisang untuk menyemir sepatu, bersihkan sisa kulit buah yang mengandung vitamin C, B komplek dan B6 itu dengan menggunakan lap berbahan halus. Kandungan minyak yang terdapat dalam pisang akan melembutkan serta mengawetkan kulit sepatu

Dengan menggunakan kulit pisang kita dapat mengurangi pemakaian semir sepatu yang bahannya tidak alami yang lama kelamaan akan mengurangi kualitas dari sepatu itu dan selain itu dengan mengguanakan kulit pisang kita bisa mengurangi biaya yang harus dikeluarkan untuk membeli semir sepatu.

Dengan memanfaatkan limbah pisang sebagai bahan-bahan yang akan meningkatkan nilai tambah dari limbah tersebut maka kita juga akan mengefisienkan biaya dan energy. Contoh dari pengefisienan biaya adalah dengan menggunakan kulit pisang sebagai semir sepatu. Dengan menggunakan kulit pisang sebagai pemnggati dari semir sepatu kita bisa mengurangi biaya yang harus dikeluarkan untuk membeli semir sepatu, dengan membeli pisang kita bisa mendapatkan dua keuntungan yaitu buah pisang yang mengandung banyak vitamin dan kulit pisang yang bisa dibuat semir sepatu. Sedangkan contoh untuk pengefisienan energy adalah dengan menggunakan daun pisang sebagai pembungkus makanan, dengan menggunakan daun pisang kita bisa menghemat energy yang keluar dari plastic yang sering digunakan karena dengan menggunakan plastic sebagai pembungkus makanan akan mengakibatkan pemanasan global.

Dengan memanfaatkan limbah pisang sebagai produk baru maka akan meningkatkan nilai tambah dari limbah tersebut. Dan akan meningkatkan nilai jual dari limbah yang tadinya tidak berguna jadi berguna.

DAFTAR PUSTAKA

http://bemteunnes.wordpress.com/2008/04/23/variabel/

http://www.coretan-adie.co.cc/2008/06/kulit-pisang-semir-sepatu.html

http://ia26.wordpress.com/2008/01/19/teknology-tepat-guna/

http://www.indospiritual.com/artikel_khasiat-kulit-pisang-untuk-depresi-dan-kesehatan-retina.html

http://js.unikom.ac.id/rb/bab7.html

http://kertas-nyeni.blogspot.com/search/label/Kertas%20Daur%20Ulang

http://tumbuh.wordpress.com/2007/10/30/daun-pisang-klutuk/

http://unnes.ac.id/v6_alpha/1/artikel_280.pdf


Senyawa Pada Tempe Faktor-2 (6,7,4’-trihidroksi isoflavon)

Senyawa Pada Tempe Faktor-2 (6,7,4′-trihidroksi isoflavon)

Isoflavaonoid adalah salah satu golongan senyawa metabolit sekunder yang banyak terdapat pada tumbuh-tumbuhan, khususnya dari golongan leguminoceae (tanaman berbunga kupu-kupu). Isoflavaonoid termasuk dalam golongan flavonoid (kelompok senyawa fenol) dengankerangka dasar 1,2-diarilpropan. Senyawa isoflavon pada umumnya berupa senyawakompleks atau konjugasi dengan senyawa gula melalui ikatan glikosida (Snyder, 1987).

Kedelai memiliki kandungan isoflavon yang tinggi, khususnya pada bagian hipokotil (germ)yang akan tumbuh menjadi tanaman. Kandungan isoflavon pada kedelai berkisar antara 2-4mg/gram kedelai. Jenis senyawa isoflavon utama pada kedelai adalah genistin, daidzin, danglistin. Bentuk senyawa demikian ini mempunyai aktivitas fisiologi kecil karena beradadalam bentuk glikosida.

Selama proses pengolahan, baik melalui proses fermentasi maupun proses non-fermentasi,senyawa isoflavon dapat mengalami transformasi, terutama melalui proses hidrolisasehingga diperoleh senyawa isoflavon bebas yang disebut dengan aglikon yang memilikiaktivitas lebih baik. Senyawa aglikon adalah genestein, glisitein, dan daidzein.

Hasil transformasi lebih lanjut dari senyawa aglikon menghasilkan senyawa yangmempunyai aktivitas biologi lebih tinggi yaitu faktor-2 (6,7,4′-trihidroksi isoflavon). Hal iniditunjukkan oleh Murata yang membuktikan bahwa faktor-2 (6,7,4′-trihidroksi isoflavon)mempunyai aktivitas antioksidan dan antihemolitik lebih baik dari daidzein dan genistein(Murata, 1985). Struktur dari keempat jenis isoflavon tersebut dapat dilihat pada gambar di bawah ini:


Struktur Isoflavon (Braz dkk, 1993)Faktor-2 tidak terdapat pada kedelai tetapi hanya terdapat pada tempe. Senyawa ini mula-mula ditemukan oleh Gyorgy pada ekstrak tepung tempe (Gyorgy, 1964). Penelitian tersebutmenunjukkan bahwa pada tempe hasil fermentasi dengan Rhizopus Oligosporusmenghasilkan isoflavon genistein (5,7,4′-trihidroksi isoflavon, daidzein (7,4′-dihidroksiisoflavon) dan faktor-2 (6,7,4′-trihidroksi isoflavon).

Menurut penelitian (Barz dkk, 1985). Faktor-2 dibentuk melalui demetilasi glisitein ataumelalui reaksi hidroksilasi daidzein. Daidzein dan glisitin pada biji kedelai yang terikatdengan glukosa melalui ikatan glikosida dapat dihidrolisis oleh enzim β-glukosidase selama proses perendaman kedelai. Penelitian Barz menunjukkan terbentuknya faktor-2 dapatdimulai dengan hidroksilasi gugus C-6 dari daidzein atau demetilasi gugus C-6 dari glisitein.

Aktivitas fisiologis senyawa isoflavon telah banyak diteliti dan ternyata menunjukkan bawa berbagai aktivitas berkaitan dengan struktur senyawanya. Aktivitas isoflavon sebagaiantioksidan ditentukan oleh bentuk struktur bebas (aglikon) dari senyawanya (Murakami,1984). Aktivitas tersebut ditentukan oleh gugus –OH ganda, terutama dengan gugus C=O pada posisi C-3 dengan gugus –OH pada posisi C-6 atau pada posisi C-4. Gugus dihidroksi pada posisi orto menyebabkan faktor-2 mempunyai sifat antioksidan yang lebih kuatdibandingkan dengan genistein, daidzein dan glisitein (Prat, 1985).

Menurut Handayani (2006), faktor-2 memiliki afinitas ikatan jauh lebih tinggi dibandingkandengan isoflavon lain karena memiliki tiga gugus hidroksil pada posisi C-6, C-7 dan C-4’sehingga probabilitas untuk berinteraksi secara ikatan hidrogen menjadi lebih tinggi. Ikatanhidrogen penting dalam pengikatan ligan oleh reseptor/protein.

Isoflavon pada tempe yang aktif sebagai antioksidan, yaitu 6,7,4′-trihidroksi isoflavon,terbukti berpotensi sebagai anti-kontriksi pembuluh darah pada konsentrasi 5µg/ml dan juga berpotensi menghambat pembentukan LDL. Dengan demikian isoflavon dapat mengurangiterjadinya arteriosclerosis pada pembuluh darah (Jha, 1985).


PEMBUATAN ES KRIM (SKALA INDUSTRI)

PEMBUATAN ES KRIM (SKALA INDUSTRI)

 

Es krim adalah buih setengah beku yang mengandung lemak teremulsi dan udara. Sel-sel udara yang ada berperanan untuk memberikan texture lembut pada es krim tersebut. Tanpa adanya udara, emulsi beku tersebut akan menjadi terlalu dingin dan terlalu berlemak.

Bahan utama dari es krim adalah lemak (susu), gula, padatan non-lemak dari susu (termasuk laktosa) dan air. Sebagai tambahan, pada produk komersil diberi emulsifier, stabiliser, pewarna, dan perasa. Sebagai emulsifier biasanya digunakan lesitin, gliserol monostearat atau yang lainnya. Emulsifier ini berguna untuk membangun distribusi struktur lemak dan udara yang menentukan dalam membentuk sifat rasa/tekstur halus dan pelelehan yang baik. Untuk stabilisernya bisa digunakan polisakarida dan ini berfungsi sebagai penambah viskositas. Sedangkan pewarna dan perasa bisanya bervariasi tergantung pada selera pasar. Jika ingin diberi rasa strawberry tentunya diberi perasa strawberry dan pewarna makanan merah.

Bahan-bahan tersebut dicampur, dipasteurisasikan, dihomogenasikan, dan didinginkan dengan cepat. Setelah emulsi minyak dalam air tersebut dibiarkan dalam waktu yang lama, kemudian dilewatkan dalam kamar yang suhunya cukup rendah untuk membekukan sebagian campuran. Pada saat yang sama udara dimasukkan dengan cara dikocok.

Tujuan dari pembekuan dan aerasi ini adalah pembentukan buih yang stabil melalui destabilisasi parsial dari emulsi. Pengocokan tanpa pendinginan tidak akan memberikan buih yang stabil. Jika buih terlalu sedikit produknya akan tampak basah, keras dan sangat dingin. Sedang jika buihnya terlalu banyak maka produknya akan tampak kering. Sel-sel udara pada es krim harus berukuran sekitar 100 mikron. Jika sel udaranya terlalu besar, es krimnya akan meleleh dengan cepat. Sedang jika sel udaranya terlalu kecil maka buihnya akan terlalu stabil dan akan meninggalkan suatu ‘head’ ketika meleleh.

Es krim mempunyai struktur koloid yang kompleks karena merupakan buih dan juga emulsi. Buih padat terjadi karena adanya lemak teremulsi dan juga karena adanya kerangka dari kristal-kristal es yang kecil dan terdispersi didalam larutan makromolekular berair yang telah diberi gula. Peranan emulsifier (misalnya: gliserol monostearat komersial) adalah untuk membantu stabilisasi terkontrol dari emulsi didalam freezer. Perubahan-perubahan polimorfis lemak pada es krim selama penyimpanan menyebabkan perubahan bentuk pada globula awalnya, yang berkombinasi dengan film protein yang agak lepas, menyebabkan terjadinya penggumpalan di dalam freezer. Stabilisasi gelembung-gelembung udara pada es krim juga terjadi karena adanya kristal-kristal es dan fasa cair yang sangat kental. Stabiliser polisakarida (misalnya: carrageenan) menaikkan kekentalan fasa cair, seperti juga gula pada padatan non-lemak dari susu. Stabiliser-stabiliser ini juga dikatakan dapat memperlambatan pertumbuhan kristal-kristal es selama penyimpanan. Hal ini karena jika kristal-kristal esnya terlalu besar maka akan terasa keras di mulut. Untuk itu dalam makalah ini akan dibahas mengenai pembuatan eskrim pada skala industry pembuatan eskrim.

Bahan baku utama

1. Lemak

Lemak (lipida) terbentuk dari unit-unit struktural dengan hidrofobisitas yang tampak jelas. Lipida tidak larut dalam air, tetapi larut dalam pelarut organik. Ketidak larutan dalam air adalah sifat analitis yang digunakan untuk pemisahan cepat antara lemak dari protein dan karbohidrat (Belitz and Groosch, 1987)

Minyak atau lemak, khususnya minyak nabati, mengandung asam-asam lemak essensial seperti linoleat, linolenat, dan arakidonat yang dapat mencegah penyumbatan pembuluh darah akibat kolesterol. Selain itu, lemak dan minyak juga berfungsi sebagai sumber dan pelarut bagi vitamin-vitamin A, D, E dan K (Winarno, 1997).

Lemak sendiri dapat menyusun 10-15% berat es krim susu (dairy ice cream), dapat berupa lemak susu (seperti whole milk, cream, butter, atau Anhydrous Milk Fat (AMF)) atau lemak nabati yang terbuat dari padatan minyak biji bunga matahari, minyak kelapa, minyak kedelai, dan rapessed oil.

Penambahan lemak nabati dilakukan karena lemak nabati lebih aman digunakan dan memiliki sifat yang lebih spesifik khususnya menyangkut flavor (lemak nabati tidak menyebabkan off flavor akibat absorbsi senyawa-senyawa flavor). Tujuan ditambahkannya lemak adalah untuk memperbaiki tekstur, memperbaiki cita rasa dan memenuhi standar yang ada. Untuk produk-produk jenis es puter, ditambahkan santan (ekstraksi daging buah kelapa) sebagai tambahan sumber lemak bagi lemak nabati dari kedelai.

2. Padatan Susu non Lemak / Milk solid-non-fat (MSNF)

Padatan susu non lemak / Milk solid-non-fat (MSNF) ialah padatan yang diperoleh dari susu yang terdiri atas protein, garam dan laktosa. Protein merupakan zat makanan yang sangat penting bagi tubuh karena protein berfungsi sebagai bahan bakar dalam tubuh dan sebagai zat pembangun serta zat pengatur. Sedangkan garam merupakan substansi yang ada atau mungkin ada dalam susu sebagai ion-ion dengan berat molekul yang sangat kecil (kurang dari 300). Dan laktosa merupakan karbohidrat utama yang terdapat dalam susu.

Pada pembuatan es krim industri biasanya menambahkan MSNF dalam bentuk bubuk susu atau susu skim yang terkondensasi (condensed milk). Jumlah MSNF yang ditambahkan harus sekitar 11-11,5% berat untuk didapatkan mix es krim yang memiliki kadar lemak 10-12%. Selain memiliki nilai nutrisi yang tinggi, MSNF jugameiliki kemampuan untuk memperbaiki tekstur es krim dengan cara mengikat air dan memindahkan air dan protein yang terkandung dalam MSNF dapat mempengaruhi distribusi yang tepat dari udara di dalam es krim selama proses pembekuan.

MSNF ditambahnkan pada proses pembuatan dengan tujuan didapatkannya kadar lemak yang bervariasi sebagai hasil dari buttermilk dan terhindar dari flavor yang mungkin dihasilakn oleh buttermilk itu sendiri serta agar didapatkan tekstur yang lebih bagus.

3. Gula

Gula merupakan istilah umum yang sering diartikan untuk karbohidrat yang digunakan sebagai pemanis. Dalam dunia industri, gula yang paling sering digunakan ialah sukrosa yang tersusun atas dua komponen, fruktosa dan glukosa.

Untuk pembuatan es krim, gula ditambahkan untuk mengikat / mengatur kadar padatan di dalam es krim dan untuk memberikan rasa manis yang diinginkan konsumen. Biasanya tiap mix es krim mengandung 10-18% berat gula. Penambahan gula yang berlebihan akan menimbulkan efek turunnya titik beku mix es krim yang akan memperberat keja pembekuan, oleh karena itu penambahan gula haru dilakukan dalam jumlah yang tepat. Gula tebu, gula bit, glukosa, laktosa dan gula invert merupakan macam-macam gula yang dapat digunakan.

Industri biasanya menambahkan gula dalam bentuk gula pasir (kristal sukrosa) dengan tujuan akan meningkatkan cita rasa/menambah rasa manis, meningkatkan total padatan dan memenuhi standar yang ada.

4.    Pengemulsi dan Penstabil

Pengemulsi merupakan substansi yang membantu emulsifikasi dengan mengurangi tegangan permukaan dari produk-produk cair. Selain itu, pengemulsi juga dapat membantu menstabilakn emulsi. Dalam suatu sistem yang tidak dapat bercampur seperti air/minyal, emulsifier terletak pada antarmuka/ interface yang berfungsi untuk mengurangi besarnya tegangan antarmuka (Belitz and Groosch, 1987). Pengemulsi yang biasa digunakan dalam pembuatan es krim ialah glycerin esters, sorbitol esters, sugar esters dan ester-ester dari sumber lain, biasanya dalam jumlah 0,2-0,4% berat mix es krim.

Sedangkan penstabil merupakan bahan yang jika didispersikan dalam fase cair akan mengikat molekul air dalam jumlah besar sehingga membentuk jaringan yang mencegah molekul air bergerak bebas (Bylunel,1995). Penambahan penstabil dalam pembuatan es krim memiliki beberapa fungsi seperti meningktkan viskositas dari fase kontinyu sehingga dapat memberi kontribusi terhadap eating characteristics seperti body dan creaminess serta dapat mengatur perkembangan kristal es. Penstabil dapat mendorong tingkat pembentukan inti (nucleation) tapi menghambat tingkat pertumbuhan yang liner sehingga didpatkan kristal es yang kecil dan bertekstur halus.

Pada pembuatan es krim, Industri biasanya menggunakan pengemulsi dari senyawa mono dan digliserida. Sedangkan untuk penstabil digunakan karagenan, gum guar dan sodium-CMC. Akan tetapi, pengemulsi dan penstabil yang digunakan sudah dalam satu campuran sehingga dapat bekerja secara sinergik di dalam mix es krim. Pada pembuatan water ice, hanya digunakan penstabil agar partikel-partikel padatan dapat menyau dengan pembawanya (air) dan tidak dilakukan penambahan pengemulsi karena tidak mengandung lemak pada produk water ice.

5.    Pewarna dan Perasa

Pewarna merupakan bahan yang digunakan untuk mengatur atau memperbaiki diskolorisasi makanan atau perubahan warna selama proses atau penyimpanan. Sedangkan zat perasa merupakan senyawa-senyawa yang meningkatkan aroma daro komoditi makanan walaupun zat ini sendiri, dalam konsentrasi penggunaannya tidak memiliki bau atau rasa yang khusus (Belitz and Groosch, 1995).

Industri biasanya menggunakan bahan perwarna pada mix agar didapatkan penampilan yang menarik pada es krim dan untuk meningkatkan warna dari bahan tambahan perasa buah.

Sedangkan bahan perasa, paling umum digunakan ialah vanilla, nougat, coklat, strawberry dan kacang. Beberapa produk menggunakan real fruit sebagai bahan penyumbang flavor seperti kopyor dan durian. Penambahan aksesoris pada es krim (seperti kacang, nougat dan selai) bertujuan untuk memperkaya flavor dan pemanis. Kakao digunakan untuk coating/pelapis coklat pada es krim bars, cones dan bricks.

6.    Air dan Udara

Air digunakan untuk mencampurkan bahan-bahan yang digunakan dalam pembuatan es krim sehingga didapatkan mix es krim yang siap diolah lebih lanjut menjadi es krim. Sedangkan udara digunakan untuk memberikan es krim kandungan udara (overrun) yang sesuai dengan jenis es krim sehingga didapatkan tekstur es krim yang halus dan mengurangi rasa dingin yang berlebihan. Udara yang digunakan berasal dari kompresor udara yang telah mengalami filtrasi dengan filter mikrobial sebelum masuk ke dalam mix es krim.

Bahan baku pembantu

    Dalam pembuatan es krim , selain bahan baku utama digunakan pula bahan baku pembantu antara lain seperti aksesoris buah-buahan, pelapis coklat/strawberry, kacang/wafer cone giling.

  1. Aksesoris buah-buahan

    Aksesoris buah-buahan adalah buah-buahan yang ditambahkan ke dalam mix es krim yang berfungsi selain untuk menambah penampilan suatu produk/ sebagai aksesoris, juga untuk meningkatkan cita rasa produk. Aksesoris buah-buahan ditambahkan ke dalam mix setelah mix keluar dari continous freezer ( mengalami pembekuan ). Aksesoris buah dicampurkan ke dalam mix dengan bantuan alat yang disebut fruit freeder.

    Jenis aksesoris lain yang juga dikategorikan sebagai aksesori buah-buahan yang biasa dimbahkan pada produk es krim buatan industri adalah seperti tape ketan hitam, kopyor, kacang-kacangan, kismis/raisin, crinkle, dan choco cips. Namun, yang biasa digunakan pada rata-rata pabrik pembuat es krim adalah crinckle dn choco cips.

    Crinkle adalah cairan semi solid seperti selai/jam denga rasa tertentu yang dicampurkan ke dalam mix es krim yang keluar dari continous freezer. Selain sebagai aksesoris, bahan ini juga berfungsi meningkatkan rasa produk.

    Choco cips adalah potongan-potongan coklat yang digunkan sebagai aksesoris. Choco cips berasal dari coklat cair yang dikeraskan dengan air dingin kemudian dipotong keci-kecil dan bercampur dengan mix es krim bersuhu rendah dari continous freezer melalui suatu feeder.

  2. Pelapis coklat/strawberry

    Pelapis coklat/ coating adalah suatu campuran coklat (dari kakao) dan lemak yang berbentuk cair dengan viskositas dan elastisitas tertentu serta memiliki titik beku tinggi (cepat membeku) sehingga dapat digunakan sebagai coklat pelapis.Selain itu, biasanya juga diguanakan pula pelapis strawberry yang dibuat dari buah strawberry.

  3. Kacang dan wafer cone giling

    Kacang adalah aksesoris yang ditambahkan pada permukaan produk es krim dengan pelapis coklat. Aksesoris kacang dicampurkan ke dalam cairan pelapis coklat dan akan menempel pada pelaps coklat saat cairan pelapis tersebut mengeras. Aksesoris kacang juga ditambahkan pada produk es krim cone sebagai pelengkap.

    Wafer cone giling adalah aksesoris yang fungsinya sama seperti aksesoris kacang. Wafer cone giling digunakan untuk menggantikan sebagian kacang. Aksesoris ini berasal dari wafer cone yang cacat sehingga tidak boleh digunakan dalam produksi. Wafer tersebut digiling untuk memperoleh pecahan-pecahan kecil yang selanjutnya dicampur dengan kacang sebagai aksesoris tambahan pada bahan pelapis.

Bahan baku penolong ( Bahan Pengemas )

Material-material pengemas yang biasa digunakan pada pembuatan es krim di industri adalah :

  1. Roll plastik. Digunakan sebagai pengemas primer pada produk-produk es krim stick.
  2. Pack dan cup plastik. Digunakan sebagai pengemas primer pada produk-produk es krim cup dn family pack.
  3. Heat-shrink plasyic film. Digunakan sebagai pengemas sekunder pda produk-produk family packdan es krim 5 ltr.
  4. Kertas cone wrapper. Digunakan sebagai pengemas primer pada produk-produk es krim cone.
  5. Kotak kertas karton cardboard. Digunakan sebagai pengemas primer pada produk-produk es krim 5 ltr.
  6. Kotak kertas karton. Digunakan sebagai pengemas sekunder pada produk-produk es krim stick, cup, dan cone, sedangkan pada produk-produk family pack berfungsi sebagai pengemas tersier.

Preparasi penimbangan bahan

Dalam pembuatan es krim skala industry sisem produksi yang digunakan adalah system batch. Penimbangan bahan dilakukan secara manual sesuai dengan jenis es krim yang akan diproduksi semisal vanilla 4x,material yang harus ditimbang berarti 4x resep/batch.untuk mempermudah pencampuran lemak dan coklat massa harus dilelehkan terlebih dahulu.

Pencampuran ( mixing )

Setelah ditimbang bahan baku dicampur menjadi satu di dalam satu tangki pencampuran/mixing tank.Seluruh bahan baku ini dipanaskan dan dicampur dalam tangki pencampuran menjadi suatu campuran yang homogen,yang kemudian di pasteurisasi dan dihomogenesasi. Jadi proses pencampuran ini juga berfungsi untuk melakukan pre-heating sebelum mix dipasteurisasi.

Proses pencampuran dilakukan pada suhu 60°C selama 15 menit. Penambahan bahan-bahan bubuk selama pencampuran dilakukan sedikit demi sedikit agar tercampur rata dan tidak menggumpal. Pada proses pencampuran ,untuk mencapai suhu 60°C,mix dipanaskan dengan system sirkulasi ( close loop system ) di PHE. Perhitungan waktu 15 menit mulai dilakukan pada saat mix tepat mencapai suhu 60°C. Bahan-bahan lain seperti gula,skim milk powder,buttermilk,coklat bubuk dan air dimasukan kecorong dan diteruskan ke tangki pencampuran melalui pompa hisap atau suction pump yang menggunakan air panas sebagai media pemanas.

Pasteurisasi

Mix yang sudah mencapai suhu 600,selama 15 menit dipasteurisasikan pada suhu 80-850 selama 15 detik ( holding ). Proses pasteurisasi dilakukan dengan menggunakan PHE.

Pasteurisasi ditujukan untuk membunuh bakteri pathogen ( bakteri yang merugikan ) yang mungkin terdapat pada mix.setelah pasteurisasi dilanjutkan pada proses homogenisasi.

Homogenisasi

Homogenisasi adalah proses pemecahan globula lemak menjadi bentuk yang lebih kecil sehingga dihasilkan produk yang homogen. Homogenisasi dilakukan dengan mengalirkan mix melalui celah yang sangat kecil dengan tekanan (pressuer) yang sangat besar. Setelah melewati celah tersebut partikel-partikel lemak dan air darimix akan tampak homogen. Semakin tinggi kadar lemak,semakin rendah tekanan yang diperlukan.Untuk produk water ice,proses homogenisasi dialakuakan tanpa pemberian tekanan (hanya dilewatkan) karena kandungan lemaknya tidak ada.

Pendinganan (cooling/chilling)

Proses pendinginan dilakukan pada temperature 4-60 C dengan tujuan “heat shock” untuk menghambat pertumbuhan mikroorganisme.Proses pendinginan dilakukan dengan mengalirkan mix dalam PHE yang dilalui air pendingin (chiler) bersuhu 3-40 C sebagai media pendingin.suhu mix setelah pendinginan (sebelum masuk tahap aging) diharapkan sekitar 4-60C tapi suhu pendinginan actual yang terjadi bisa 9-100 C dan tidak pernah menyebabkan masalah.Prose pasteurisasi,homogenisasi,dan pendinginan dilakukan selam 1jam 10 menit.Mix yang sudah mengalami PHC dimasukan kedalam tangki aging untuk mengalami proses aging.

Aging

Didalam tangki aging dipertahankan suhu 4-60 C.Proses aging dilakukan dengan cara mendiamkan mix aging selama 4-12 jam dengan tujuan mengoptimalkan kerja penstabil (ada waktu yang cukup bagi penstabil untuk mengikat air bebas) dan mempermudah pembekuan.

Pembekuan

Setelah proses aging,mix dialirkan ke continuous freezer (CF) untuk dibekukan.Pada saat yang sama dialirkan udara kedalam mix yang terdapat dalam silinder continuous freezer terjadi proses pembekuan sebagian air dalam mix (40-45%)sehingga didapatkan soft ice cream dengan temperature -4 samapi -60 C.Jumlah udara yang ditambahkan pada saat pembekuan disebut overrun.

Pengisian

Ada beberapa jenis mesin filling (pengisian):ROLLO,CUP,HOYER. Seluruh mesin pengisian tersebut menjalankan proses pengisian secara otomatis. Untuk beberapa produk perlu penambahan aksesoris lain pada saat pengisian, misalnya buah, kacang, topping, crinkle, dan lain-lain. Hal ini dilakukan dengan menggunakan mesin fruit feeder.

Pengerasan

Soft ice yang dihasilkan pada saat pembekuan tidak tahan terhadap kelumeran/ melting selama pengemasan bila tidak dikeraskan terlebih dahulu. Proses hardening bertujuan untuk membekukan es krim pada suhu -35°C sampai -40°C selama 30-45 menit.

Tiga metode pengerasan yang digunakan saat ini : (1) pengerasan aliran udara (cold air steam hardening) dingin pada -35°C hingga 40°C, yang sangat baik dengan memandang bentuk dari objek, tapi tidakefisien dari sudut pandang keteknikan karena panas yang dihasilkan dari fan berukuran besar diperlukan; (2) pengerasan pada plat (plate hardening) cocok khususny untuk kemasan datar berbentuk segi empat, dimana kemasan ditahan dalam kontak yang dekat dengan plat logam yang didinginkan ; dan (3) kontak langsung dengan cairan terefrigersi yang mendidih seperti nitrogen cair. Prosedur terakhir ini secara thermal efisien tapi lebih mungkin membawa pada kerusakan permukaanndan penyusutan dari produk. Hasil yang memuaskan telah dilporkan dari waktu kontak yang relatif singkat dengan nitrogen cair diikuti dengan penyimpanan dingin (cold storage).

Rata-rata ukuran kristal es agak meningkat selama hardening pada -30°C dan agak meningkat kembali selama 7 minggu awal penyimpanan pada -20°C, tapi kemudin ternyata menjadi stabil. Setelah pengerasan,, eskrim normalnya disimpan pada temperatur -17°C dan kemudian stabil tanpa perubahan-perubahan lebih lanjut dalam struktur untuk beberapa bulan. Untuk beberapa produk dilakukan pengerasan langsung dengan menggunakan cold brine pada temperatur -35°C selama ± 5 menit sehingga es tidak lumer saat pengemasan dan ditransportasikan ke cold storage.

Pengemasan

Es krim yang sudah keras siap dikemas. Sebagian besar produk es krim di industri dikemas sampai dengan kemasan sekunder . Kemasan primer adlh etiket/ bungkus plastik, cup, atau cone sedangkan kemasan sekunder adalah kotak kertas karton/ kardus namun pada beberapa produk kemasan sekunder berupa heat-shrink plastic/ plastik string.

Pada kemasan sekunder/ tersier (kardus) dicantumkan kode produksi (tanggal/bulan/tahun produksi – jam produksi – kode produk – shift). Selain itu dicantumkan pula nama produk es krim yang dikemas, jumlah tumpukan karton maksimum, dan advertising.

Penyimpanan

Es krim yang sudah dikeraskan dan dikemas segera disimpan ruang pembeku (freezing room) yang bersuhu -25°C kemudian siap dipasarkan setelah disimpan selama kurang lebih 24 jam.

PERALATAN PENGOLAHAN

Mesin dan peralatan yang terlibat langsung dalam produksi ice cream :

Tangki penyiapan

Merupakan tangki-tangki yang digunakan untuk melarutkan bahan-bahan yang berbentuk seperti bubuk susu skim dan bubuk coklat dengan air sebelum ditransfer melalui pipa ke dalam mixing tank atau tangki pencampuran . Prisip kerjanya yaitu pelarutan dengan air panas dengan bantuan pengaduk/agitasi.

Fat thawing

Merupakan alat yang digunakan untuk melelehakan lemak nabati yang berbentuk padat menjadi cairuntuk selanjutnya ditransfer melalui pipa kedalam tangki pencampuran.Prinsip kerjanya yaitu suatu tray tempat meletakan lemak yang dipanasi sehingga lemak tersebut meleleh.

Corong pemasukan bahan

Merupakan corong yang digunakan untuk memasukan bahan-bahan baku yang tidak perlu dilarutkan terlebih dahulu seperti pengemulsi,penstabil dan gula pasir.selanjutnya semua bahan juga dialirkan kedalam tangki pencampur melalui pipa.

Plate heat exchanger

Merupakan mesin yang digunakan untuk pasteurisasi mix es krim atau memanaskan bahan baku yang dicampurkan pada tahap pencampuran sehingga mempercepat pencampuran. Selain memanaskan PHE juga digunakan untuk mendinginkan es krim setelah homogenisasi. Prinsip kerjanya yaitu pertukaran panas atau kalor antara mix dengan media pemanas atau pendingin melalui logam penghantar panas yang berbentuk plat-plat. Plate heat exchanger tediri dari satu set plat stanless steel dijepit pada suatu frame. Kerangkanya dapat terdiri dari beberapa pak plat terpisah. Plat disusun sedemikian rupa untuk transfer panas optimum. Plate heat exchanger dapat dilalui media pemanas atau media pendingin tergantung tujuan yang diinginkan.

 


Gambar 4. Plate Heat Exchanger

Homogenizer

Merupakan mesin yang berfungsi untuk mengecilkan ukuran globula lemakmix es krim sehingga diperoleh emulsi yang sesuai dengan standar. Prinsip kerjanya yaitu memaksa mix es krim melewati suatu celah yang sangat kecil ukurannya dengan menggunakan tekanan yang sangat besar sehingga setelah melewati celah diperoleh ukuran butiran mix yang kecil dan seragam. Tekanan yang digunakan tergantung dari jenis mix es krim,semakin sedikit kandungan lemak mix tersebut. Maka semakin besar tekanan yang diperlukan. Tekanan yang diperlukan untuk menghomogenisasi mix es krim adalah antara 1000 psi sampai dengan 1500 psi.

 


Gambar 5. Homogenizer

Tangki pencampuran

Merupakan tempat dimana sebagian besar bahan baku utama es krim dicampurkan menjadi suatu mix es krim. Prinsip kerjanya yaitu pencampuran dengan menggunakan bantuan agitator dan pemanasan dari PHE.

Tangki Aging

Merupakan tempat dimana mix es krim mengalami proses aging atau pendiaman pada suhu tertentu. Prinsip kerja tangki aging yaitu suatu mesin pengendali suhu ( thermostatic ). Tangki aging adalah double jacketed tank dimana ruang antar kedua jacket tersebut dapat dialiri air pendingin ( chiler ) sehingga suhu mix didalam tangki aging dapat dipertahankan konstan antara suhu 40-60C.

Continous Freezer

Merupakan mesin yang berfungsi untuk membekukan mesin es krim dari tahap aging sehingga mix es krim yang sebelumnya cair akan menjadi semi solid tapi belum mengeras. Prinsip kerja pembekuan yang terjadi di continous freezer adalah seperti yang terjadi pada evaporator dalam suatu system refrigerasi. Cairan Refrigerant yang suhunya sangat rendah akan mendinginkan mix es krim sehingga mix tersebut akan membeku. Selain pembekuan, di Continous Freezer juga dilakukan pengisian udara kedalam mix es krim ( overrun ). Hal ini dilakukan di lakukan dengan cara meniupkan udara kedalam tabung melalui pipa udara serta dengan bantuan suatu pisau scraper atau penggaruk yang mengeruk mix es krim yang membeku sehingga udara dapat masuk dalam mix.


Gambar 8. Continous Freezer

Mesin mesin pengisian

Merupakan mesin –mesin yang digunakan untuk untuk mecetak atau mengisikan es krim kedalam wadahnya. Mesin pengisian atau filling terdiri atas

(1)    Mesin HOYER/STRAIGHT LINE untuk pembuatan es krim-es krim stick dengan bentuk khusus seperti Mimi,Bola,Heart.

(2)    Mesin RIA dan ROLLO untuk pembuatan es krim biasa

(3)    Mesin FILLMARK untuk pembuatan es krim cup dan cone

Prinsip kerja mesin-mesin ini adalah pengisian mix es krim beku kedalam wadah atau pencetakan es krim menjadi bentuk-bentuk yang diinginkan sesuai dengan cetakannya ( mould ).

Hardening tunel

Merupakan suatu terowongan pendingin yang digunakan untuk mengeraskan es krim yang sudah melalui proses pengisian.Suhu didalam hardening tunel mencapai suhu -350 C – 400C. Prinsip kerja hardening tunel yaitu pendinginan udara di dalam terowongan menggunakan refrigerant. Untuk mesin HOYER,hardening tunel telah terintegrasi menajdi satu dengan bagian pengisiannya dengan plat-plat logam tempat produk diletakkan selama masuk terowongan. Sedangkan mesin untuk FILLMARK hardening tunnel untuk mesin-mesin FILLMARK yang berada didekat pengisiannya dan berupa rak-rak yang keluar masuk terowongan. Untuk mesin RIA dan ROLLO tidak digunakan hardening tunel tapi proses pengerasamn terjadi langsung pada mesin dengan menggunakan media cairan pendingin (cool brine) yang didinginkan dengan refrigerant.


        Gambar 10. Hardening tunel

DAFTAR PUSTAKA

Belitz, H.D and Groosch, W.N. 1987. Food Science. Australian Vice Chancelor’s Committee. Brisbane Australia

Winarno, F.G. 1997. Kimia Pangan dan Gizi. Penerbit PT Gramedia Pustaka Utama. Jakarta


PEMANFAATAN UMBI UBI JALAR SEBAGAI BAHAN BAKU PEMBUATAN ES KRIM

PEMANFAATAN UMBI UBI JALAR SEBAGAI BAHAN BAKU PEMBUATAN ES KRIM

Dian Adi A. Elisabeth, M.A. Widyaningsih, dan I K. Kariada

Balai Pengkajian Teknologi Pertanian (BPTP) Bali

ABSTRAK

Teknologi pengolahan pangan modern telah menghasilkan kreasi baru olahan ubi jalar, salah satunya adalah es krim ubi jalar. Es krim adalah produk pangan beku yang biasa dikonsumsi sebagai makanan selingan (desert) dengan bahan-bahan utama dalam pembuatannya seperti lemak, bahan kering tanpa lemak (BKTL) atau padatan bukan lemak, bahan pemanis, bahan penstabil, dan bahan pengemulsi. Penelitian untuk melihat pengaruh subtitusi susu skim dengan ubi jalar sebagai sumber padatan bukan lemak terhadap tingkat kesukaan (preferensi) panelis telah dilakukan di Laboratorium Balai Pengkajian Teknologi Pertanian (BPTP) Bali pada bulan Februari sampai Maret 2007. Perlakuan yang digunakan adalah perbandingan penggunaan susu skim dan ubi jalar, yaitu sebagai berikut : (1) susu skim : ubi jalar = 0% : 10%; (2) susu skim : ubi jalar = 2,5% : 7,5%; (3) susu skim : ubi jalar = 5% : 5%; (4) susu skim : ubi jalar = 7,5% : 2,5%; dan (5) susu skim : ubi jalar = 10% : 0% (= kontrol). Analisis yang digunakan adalah analisis organoleptik berupa uji hedonik. Analisis dilakukan di Laboratorium Pasca Panen, Fakultas Teknologi Pertanian, Universitas Udayana, dengan menggunakan 15 panelis semi terlatih yang sekaligus dipakai sebagai ulangan. Selain itu, juga dilakukan pengamatan terhadap over run es krim dan kecepatan meleleh di suhu ruang. Hasil analisis menunjukkan bahwa subtitusi susu skim dengan umbi ubi jalar kukus sebagai padatan bukan lemak dalam pembuatan es krim dapat diterima oleh panelis. Es krim dengan perbandingan susu skim dan ubi jalar 7,5% : 2,5% memiliki mutu yang baik, dari segi organoleptik, over run, dan kecepatan meleleh.

Kata kunci : es krim ubi jalar, uji hedonik, over run, kecepatan meleleh

PENDAHULUAN

Tanaman ubi jalar (Ipomea batatas) berasal dari Amerika bagian Tengah dan pada sekitar tahun 1960-an ubi jalar telah menyebar dan ditanam di hampir seluruh wilayah Indonesia (Rukmana, H. R, 2001). Karakteristik umbi ubi jalar atau sweet potato adalah warna kulit antara jingga muda, jingga sampai cokelat muda, warna daging umbi jingga muda, jingga sampai kuning, dan rasa umbi manis, manis agak berair, manis berair sampai manis enak tergantung pada varietasnya. Beberapa varietas ubi jalar adalah seperti Daya, Prambanan, Borobudur, Mendut, dan Kalasan.

Di tiap daerah di Indonesia, selalu ada varietas lokal ubi jalar dimana rata-rata tiap varietas memiliki karakteristik yang berbeda dengan keunggulan tertentu, seperti Ubi Selat Jawa Timur yang warna dagingnya dominan ungu dengan selingan cokelat-jingga dan terkenal sebagai bahan pembuatan keripik, Ubi Gunung Kawi yang jika dikukus warna kulit umbi akan mengkilap dan rasanya sangat manis, Ubi Madu Cilembu yang istimewa karena umbinya yang dipanggang mengeluarkan cairan kental dengan rasa yang sangat manis, Ubi Bali yang sering disajikan sebagai pendamping buah-buahan dalam pembuatan rujak manis, Ubi Papua yang diduga merupakan indukan dari varietas ubi jepang, dan Ubi Jepang yang cukup populer di Indonesia dengan berbagai varietas seperti ibaraki, beniazuma, dan naruto (Hartoyo, T, 2004). Secara umum kandungan gizi umbi ubi jalar seperti dapat dilihat pada Tabel 1.

Tabel 1. Komposisi Kimia Ubi Jalar

Kandungan  

Komposisi 

Energi (KJ/100 g) 

71,1 

Protein (%) 

1,43 

Lemak (%) 

0,17 

Pati (%) 

22,4 

Gula (%) 

2,4 

Serat makanan (%) 

1,6 

Kalsium (mg/100g) 

29 

Fosfor (mg/100g) 

51 

Besi (mg/100 g) 

0,49 

Vitamin A (mg/100 g)

0,01 

Vitamin B1 (mg/100 g) 

0,09 

Vitamin C (mg/100 g) 

24 

Air (g) 

83,3 

Sumber : Hendroatmojo (1990) dalam Hartoyo, T (2004)

Berat kering umbi adalah 16-40% berat basah. Potensi besar ubi jalar terutama terletak pada kandungan karbohidrat, dimana sebanyak 75-90% berat kering umbi merupakan gabungan dari pati, gula, dan serat seperti selulosa, hemiselulosa, dan pektin (Hartoyo, T, 2004). Karbohidrat di dalam umbi ini telah banyak diolah lebih lanjut. Teknik olahan tradisional yang sudah banyak diterapkan di masyarakat dalam bentuk beberapa jajanan lokal, seperti kue apem, kue mangkok, dan pilus dari ubi jalar, termasuk juga keripik ubi jalar. Teknologi pengolahan pangan modern juga telah banyak berperan menghasilkan kreasi baru olahan ubi jalar, dengan bentuk yang paling banyak berupa jajanan atau makanan ringan (snack food). Dalam pembuatan makanan ini, ubi jalar dapat berperan sebagai bahan utama atau bahan pensubtitusi. Salah satu jenis makanan yang memanfaatkan umbi ubi jalar sebagai bahan bakunya adalah es krim.

Es krim adalah produk pangan beku yang dibuat melalui kombinasi proses pembekuan dan agitasi pada bahan-bahan yang terdiri dari susu dan produk susu, pemanis, penstabil, pengemulsi, serta penambah citarasa (flavor). Es krim biasa dikonsumsi sebagai makanan selingan (desert) dan dikelompokkan dalam makanan camilan (snack). Prinsip pembuatan es krim adalah membentuk rongga udara pada campuran bahan es krim atau Ice Cream Mix (ICM) sehingga diperoleh pengembangan volume yang membuat es krim menjadi lebih ringan, tidak terlalu padat, dan mempunyai tekstur yang lembut (Padaga, M, dkk, 2005).

Syarat mutu es krim menurut SII (Standar Industri Indonesia) Nomor 1617 Tahun 1985 dalam Padaga, M, dkk (2005) adalah sebagai berikut :

Bahan  

 

Standar

Lemak (%) 

:

Minimal 8,0 

Padatan susu bukan lemak (%) 

:

Minimal 6,0-15,0 

Gula (%) 

:

Minimal 12,0 

Bahan Tambahan : 

   

Pemantap, pengemulsi 

:

Sesuai SK Depkes RI No. 235/Menkes/Per/VI/79 

Zat warna 

:

Pemanis buatan 

:

Jumlah bakteri 

: 

Negatif 

Logam-logam berbahaya :

   

Cu, Zn, Pb, Hg 

:

Tidak terdapat 

Arsen 

:

Tidak terdapat 

Bahan-bahan utama yang diperlukan dalam pembuatan es krim antara lain : lemak, bahan kering tanpa lemak (BKTL), bahan pemanis, bahan penstabil, dan bahan pengemulsi. Lemak susu (krim) merupakan sumber lemak yang paling baik untuk mendapatkan es krim berkualitas baik. Lemak susu berfungsi untuk meningkatkan nilai gizi es krim, menambah citarasa, menghasilkan karakteristik tekstur yang lembut, membantu memberikan bentuk dan kepadatan, serta memberikan sifat meleleh yang baik. Bahan kering tanpa lemak (BKTL) berfungsi untuk meningkatkan kandungan padatan di dalam es krim sehingga lebih kental. BKTL juga penting sebagai sumber protein sehingga dapat meningkatkan nilai nutrisi es krim. Unsur protein dalam pembuatan es krim berfungsi untuk menstabilkan emulsi lemak setelah proses homogenisasi, menambah citarasa, membantu pembuihan, meningkatkan dan menstabilkan daya ikat air yang berpengaruh pada kekentalan dan tekstur es krim yang lembut; juga dapat meningkatkan nilai over run es krim. Sumber BKTL antara lain susu skim, susu kental manis, dan bubuk whey (Padaga, M, dkk, 2005).

Bahan pemanis yang umum digunakan dalam pembuatan es krim adalah gula pasir (sukrosa) dan gula bit. Bahan pemanis selain berfungsi memberikan rasa manis, juga dapat meningkatkan citarasa, menurunkan titik beku yang dapat membentuk kristal-kristal es krim yang halus sehingga meningkatkan penerimaan dan kesukaan konsumen. Penambahan bahan pemanis sekitar 12 sampai 16 gram per 100 gram campuran es krim akan menghasilkan es krim dengan tekstur yang halus. Laktosa (gula dari susu) juga merupakan sumber pemanis selain gula yang ditambahkan dari luar. Laktosa berfungsi untuk menahan titik beku sehingga es krim masih mengandung air yang tidak membeku jika disimpan pada temperatur yang sangat rendah (-15 sampai -18°C). Jika seluruh air di dalam es krim membeku selama penyimpanan, tekstur es krim akan menjadi keras dan sulit disendok (Padaga, M, dkk, 2005).

Bahan penstabil yang umum digunakan dalam pembuatan es krim adalah CMC (carboxy methyl celulose), gum arab, sodium alginat, karagenan, dan agar. Bahan penstabil berperan untuk meningkatkan kekentalan ICM terutama pada saat sebelum dibekukan dan memperpanjang masa simpan es krim karena dapat mencegah kristalisasi es selama penyimpanan. Bahan pengemulsi utama yang digunakan dalam pembuatan es krim adalah kuning telur, juga minyak hewan atau nabati. Bahan pengemulsi bertujuan untuk memperbaiki struktur lemak dan distribusi udara dalam ICM, meningkatkan kekompakan bahan-bahan dalam ICM sehingga diperoleh es krim yang lembut, dan meningkatkan ketahanan es krim terhadap pelelehan bahan. Campuran bahan pengemulsi dan penstabil akan menghasilkan es krim dengan tekstur yang lembut (Padaga, M, dkk, 2005).

Es krim yang baik harus memenuhi persyaratan komposisi umum ICM (Ice Cream Mix) atau campuran es krim sebagai berikut :

Lemak susu 

: 10-16%

Bahan kering tanpa lemak 

: 9-12%

Bahan pemanis gula 

: 12-16%

Bahan penstabil 

: 0-0,4%

Bahan pengemulsi

: 0-0,25%

Air 

: 55-64%

Sumber : Padaga, M, dkk (2005)

Proses pembuatan es krim dimulai dengan pencampuran bahan-bahan yang dilakukan dengan cara melarutkan atau mencampurkan bahan-bahan kering ke dalam bahan cair pada kondisi hangat (40°C), lalu sambil dipanaskan dimasukkan bahan penstabil dan bahan pengemulsi sampai diperoleh campuran homogen yang disebut ICM. Campuran kemudian dipasteurisasi pada suhu 80°C selama 25 detik, sambil terus diaduk. Pasteurisasi bertujuan untuk membunuh mikroorganisme patogen, melarutkan bahan kering, dan meningkatkan citarasa. Selanjutnya ICM didinginkan sampai suhu ruang untuk dihomogenisasi dengan tujuan memecah globula lemak sehingga ukurannya lebih kecil dan dapat menyebar rata sehingga dihasilkan es krim dengan tekstur yang tidak kasar, mempunyai citarasa yang merata, dan daya buih yang baik. Homogenisasi pada pembuatan es krim skala rumah tangga dapat menggunakan blender atau mixer. Homogenisasi sebaiknya dilakukan saat kondisi ICM masih hangat (Padaga, M, dkk, 2005).

ICM kemudian di-aging, yang merupakan proses pematangan ICM dalam refrigerator bersuhu 4°C selama 4-12 jam. Tujuan aging adalah untuk menghasilkan ICM yang lebih kental, lebih halus, tampak lebih mengkilap, dan memperbaiki tekstur. Setelah proses aging, dilakukan proses homogenisasi kembali. Selanjutnya ICM dibekukan dengan cepat untuk mencegah terbentuknya kristal es yang kasar. Pembekuan dilakukan dalam dua tahap, yaitu tahap pertama pada suhu -5 sampai -8°C dan tahap kedua pada suhu sampai –30oC. Proses pembekuan yang dikombinasi dengan proses agitasi bertujuan untuk memasukkan udara ke dalam ICM sehingga dihasilkan volume es krim dengan over run yang sesuai standar es krim. Dalam skala rumah tangga, proses agitasi dapat dilakukan dengan menggunakan mixer berulang-ulang diselingi dengan proses pembekuan di dalam freezer. Setelah itu, es krim dapat dikemas dalah wadah-wadah kecil dan disimpan dalam freezer untuk proses pembekuan. Kualitas es krim akan tetap stabil pada suhu penyimpanan -25 sampai -30°C (Padaga, M, dkk, 2005).

Tujuan penelitian ini adalah untuk melihat pengaruh subtitusi susu skim dengan ubi jalar sebagai sumber padatan bukan lemak terhadap tingkat kesukaan (preferensi) panelis.

BAHAN DAN METODE

Waktu dan tempat

Penelitian dilaksanakan di Laboratorium Balai Pengkajian Teknologi Pertanian Bali pada bulan Februari sampai Maret 2007

Alat dan bahan

Bahan yang digunakan dalam penelitian adalah ubi jalar varietas lokal dengan warna daging umbi kuning-orange, susu bubuk skim, susu bubuk full krim, whipped cream, gula pasir, telur, agar-agar, garam, dan air. Sementara, alat yang digunakan dalam penelitian adalah pisau, timbangan, panci pengukus, kompor gas, blender, mixer, panci, sendok pengaduk, thermometer, dan lemari pendingin (dengan refrigerator dan freezer).

Formulasi bahan yang digunakan dalam pembuatan es krim ubi jalar ini mengacu pada Padaga, M, dkk (2005), yaitu sebagai berikut : padatan lemak 10% berupa susu bubuk full krim dan whipped cream, padatan bukan lemak 10% berupa susu bubuk skim dan umbi ubi jalar, bahan pemanis 15% berupa gula pasir, bahan penstabil 0,5% berupa agar-agar dan putih telur, bahan pengemulsi berupa kuning telur, garam sebagai pengikat air, dan air.

Metode pembuatan

Proses dasar dalam pembuatan es krim meliputi beberapa tahap, yaitu pencampuran bahan, pasteurisasi, homogenisasi, pematangan (aging), pembekuan dan agitasi, pengemasan, pembekuan, dan penyimpanan (Padaga, M, dkk, 2005).

Proses pembuatan es krim yang dilakukan dalam penelitian adalah sebagai berikut : (1) Umbi dicuci, dikukus, lalu dikupas; (2) Dihaluskan; (3) Kuning telur dikocok sampai mengembang; (4) Bahan-bahan kering dimasukkan ke dalam air hangat sambil diaduk; (5) Campuran dipanaskan, sambil kuning telur, putih telur, dan agar-agar dimasukkan dan terus diaduk; (6) Dipasteurisasi pada suhu 80-85oC selama 25 detik; (7) Adonan diangkat, didinginkan sampai suam-suam kuku, kemudian dihomogenisasi selama 15 menit; (8) Adonan disimpan di dalam refrigerator selama 4 jam untuk proses aging; (9) Dihomogenisasi ulang selama 15 menit; (10) Adonan disimpan di dalam freezer sampai setengah beku lalu diagitasi selama 15 menit; (11) Dikemas dalam wadah-wadah kemudian disimpan kembali ke dalam freezer.

Metode analisis

Perlakuan yang digunakan dalam penelitian adalah perbandingan penggunaan susu skim dan ubi jalar sebagai padatan bukan lemak, yaitu sebagai berikut : susu skim : ubi jalar = 0% : 10% (kode 801), susu skim : ubi jalar = 2,5% : 7,5% (kode 675), susu skim : ubi jalar = 5% : 5% (kode 305), susu skim : ubi jalar = 7,5% : 2,5% (kode 725), dan susu skim : ubi jalar = 10% : 0% (= kontrol, kode 400).

Perbandingan penggunaan susu skim dan ubi jalar di atas adalah perbandingan untuk berat kering; sementara dalam penelitian digunakan umbi ubi jalar yang dikukus (berat basah) sehingga digunakan asumsi bahwa berat basah ubi jalar adalah sekitar 4 kali berat keringnya (berdasarkan Hartoyo, T (2004), dimana berat kering umbi adalah 16-40% berat basah atau rata-rata sekitar 28%).

Analisis yang dilakukan adalah analisis organoleptik berupa uji hedonik (skala 1-sangat tidak suka sampai 7-sangat suka) untuk melihat tingkat kesukaan (preferensi) panelis terhadap produk es krim ubi jalar. Analisis dilakukan di Laboratorium Pasca Panen, Fakultas Teknologi Pertanian, Universitas Udayana, dengan menggunakan 15 panelis semi terlatih yang sekaligus dipakai sebagai ulangan. Selain itu, juga dilakukan pengamatan terhadap over run es krim dan kecepatan meleleh di suhu ruang. Over run dihitung dalam bentuk persentase over run berdasarkan perbedaan volume es krim dan ICM (=Ice Cream Mix) atau campuran es krim; sementara kecepatan meleleh dinyatakan dalam menit untuk melihat ketahanan es krim terhadap pelelehan pada saat dihidangkan di suhu ruang.

% Over run = (Volume es krim – Volume ICM)/ Volume ICM * 100%

HASIL DAN PEMBAHASAN

Uji Hedonik Es Krim Ubi Jalar

Menurut Padaga, M, dkk (2005), pada dasarnya kualitas es krim ditentukan oleh tekstur, rasa, bau, over run, dan kecepatan meleleh. Tabel 2 menyajikan hasil analisis organoleptik es krim ubi jalar, dengan atribut mutu organoleptik yang dinilai adalah warna, aroma, mouthfeel (tekstur di mulut), rasa, kecepatan meleleh, dan penampilan produk es krim secara umum.

Secara umum berdasarkan hasil analisis organoleptik, es krim dengan perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5% memiliki rata-rata skor hedonik terbaik dan tidak berbeda nyata dengan rata-rata skor hedonik perlakuan perbandingan susu skim dan ubi jalar 2,5% : 7,5% dan kontrol.Rata-rata skor hedonik perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5% tertinggi untuk atribut warna, aroma, mouthfeel, rasa, dan penampilan secara umum; namun tidak untuk kecepatan meleleh (Tabel 2).Sementara, secara umum rata-rata skor hedonik terendah adalah untuk perlakuan penggunaan 10% umbi ubi jalar, kecuali untuk atribut kecepatan meleleh yang skor hedoniknya tertinggi dibandingkan perlakuan lain.

Atribut mutu organoleptik 

Skor Hedonik untuk Perlakuan

810 

675 

305 

725 

400 

Warna 

3,69

4,81

5,00

6,31

6,19

Aroma 

4,38

4,93

4,69

5,56

5,19

Mouthfeel 

4,00

5,63

5,38

6,07

5,94

Rasa 

3,56

5,81

5,44

6,31

6,00

Kecepatan meleleh 

5,38

4,94

4,50

4,63

4,00

Penampilan secara umum 

3,44

5,73

5,06

6,25

5,88

Rata-rata 

4,07 c

5,31 ab

5,01 b

5,85 a

5,53 ab

Keterangan :     Perbandingan padatan bukan lemak

    810 = Susu Skim : Ubi Jalar = 0% : 10%

    675 = Susu Skim : Ubi Jalar = 2,5% : 7,5%

    305 = Susu Skim : Ubi Jalar = 5% : 5%

    725 = Susu Skim : Ubi Jalar = 7,5% : 2,5%

    400 = Susu Skim : Ubi Jalar = 10% : 0% (Kontrol)

Penilaian hedonik panelis untuk atribut warna es krim bervariasi antara 3,69 sampai 6,19 (agak tidak suka sampai sangat suka), Rata-rata skor hedonik terendah diperoleh oleh perlakuan perbandingan susu skim dan ubi jalar 0% : 10%. Rata-rata skor hedonik semakin meningkat dengan semakin berkurangnya konsentrasi umbi ubi jalar kukus yang digunakan sebagai pensubtitusi (Tabel 2). Warna umbi ubi jalar yang kuning-orange memang berpengaruh pada warna produk es krim, dimana semakin banyak konsentrasi penggunaan ubi jalar, warna es krim akan semakin kekuningan dan tampaknya hal ini kurang diminati oleh panelis, Warna es krim yang diminati adalah warna putih susu seperti perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5% dan kontrol.

Rasa dalam es krim merupakan kombinasi cita rasa dan bau (aroma), yang diciptakan untuk memenuhi selera konsumen. Pada umumnya, rasa dan aroma es krim merupakan satu kesatuan yang saling menunjang karena hal pertama yang akan diperhatikan oleh konsumen saat membeli es krim adalah rasa dan aromanya, Dari hasil analisis organoleptik, tampak ada korelasi positif antara skor hedonik terhadap aroma dan skor hedonik terhadap rasa es krim ubi jalar yang diberikan oleh panelis, dimana peningkatan skor hedonik terhadap aroma diikuti pula dengan peningkatan skor hedonik terhadap rasa (Tabel 2). Semakin banyak konsentrasi subtitusi umbi ubi jalar kukus, semakin rendah skor penilaian panelis terhadap aroma dan rasa es krim ubi jalar. Tampaknya panelis tetap lebih menyukai es krim dengan cita rasa dan aroma susu yang masih terasa dibandingkan es krim dengan cita rasa dan aroma ubi jalar yang terlalu menonjol. Hal ini ditunjukkan dengan rata-rata skor penilaian hedonik panelis untuk es krim dengan perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5% yang tertinggi, yaitu 5,56 (agak suka sampai suka) untuk aroma dan 6,31 ( suka sampai sangat suka) untuk rasa; dilanjutkan dengan rata-rata skor hedonik untuk aroma dan ras produk es krim kontrol yang padatan bukan lemaknya murni berasal dari susu skim (Tabel 2).

Menurut Padaga, M, dkk (2005), rasa sangat mempengaruhi kesukaan konsumen terhadap es krim, bahkan dapat dikatakan merupakan faktor penentu utama. Saat ini, rasa es krim di pasaran sudah sangat beragam sehingga diperlukan kejelian dan kreativitas untuk memadupadankan rasa yang menjadi kegemaran konsumen. Rasa es krim juga dipengaruhi oleh beberapa hal seperti bahan pengental yang dapat mengurangi rasa manis gula dan perubahan tekstur yang dapat mengubah cita rasa es krim.

Penilaian hedonik panelis untuk atribut mouthfeel (tekstur di mulut) bervariasi antara 4,0 sampai 6,07 (netral sampai sangat suka). Rata-rata skor hedonik tertinggi didapatkan oleh perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5%; sementara rata-rata skor hedonik terendah didapatkan oleh perlakuan es krim yang padatan bukan lemaknya murni berasal dari umbi ubi jalar kukus.

Tekstur es krim dipengaruhi oleh ukuran dari kristal es, globula lemak, gelembung udara, dan kristal laktosa (Suprayitno, E, dkk, 2001); sementara, menurut Padaga, M, dkk (2005), tekstur lembut es krim sangat dipengaruhi oleh komposisi ICM, cara mengolah, dan kondisi penyimpanan. Tekstur es krim yang baik adalah halus/ lembut (smooth), tidak keras, dan tampak mengkilap (Padaga, M, dkk, 2005); sementara, tekstur yang buruk adalah greasy (terasa ada gumpalan lemak), grainy (terasa seperti tepung), flaky/snowy (terasa ada serpihan es), lumpy/gelatin (seperti jelly), dan sandy (berpasir) (Suprayitno, E, dkk, 2001).

Berdasarkan penilaian panelis terhadap atribut kecepatan meleleh didapatkan bahwa es krim dengan perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5% paling disukai karena tidak cepat meleleh pada suhu ruang. Subtitusi susu skim dengan umbi ubi jalar kukus tampaknya mempengaruhi kekentalan adonan es krim, dimana semakin tinggi konsentrasi penggunaan umbi ubi jalar kukus, semakin kental adonan es krim. Hal ini berpengaruh lanjut pada kecepatan meleleh es krim yang semakin lambat dan tekstur es krim yang cenderung menjadi keras.

Panelis menilai bahwa penampilan secara umum es krim dengan perlakuan susu skim dan ubi jalar 7,5% : 2,5% adalah terbaik dibandingkan perlakuan lainnya, termasuk kontrol, yaitu 6,25 (suka sampai sangat suka); sementara, es krim dengan perlakuan penggunaan ubi jalar 10% memperoleh rata-rata skor hedonik terendah, yaitu 3,44 (agak tidak suka sampai netral).

Over Run dan Kecepatan Meleleh Es Krim Ubi Jalar

Over run menunjukkan banyak sedikitnya udara yang terperangkap di dalam campuran es krim atau ICM karena proses agitasi. Over run mempengaruhi tekstur dan kepadatan yang sangat menentukan kualitas es krim. Adanya udara dalam ICM akan membentuk rongga-rongga udara yang akan segera terlepas bersamaan dengan melelehnya es krim. Semakin banyak rongga udara akan menyebabkan es krim cepat menyusut dan meleleh pada suhu ruang. Es krim yang berkualitas memiliki over run 70-80%; sedangkan untuk industri rumah tangga 35-50% (Padaga, M, dkk, 2004; Suprayitno, E, dkk, 2001).

Tabel 3, Pengamatan Over Run dan Kecepatan Meleleh Es Krim Ubi Jalar

Variabel 

Perlakuan 

810 

675 

305 

725 

400 

Over run (%) 

22,22 

28,57 

54,84 

41,38 

63,33 

Kecepatan meleleh (menit) 

8,58 

2,28 

2,12 

1,41 

0,41 

Keterangan :     erbandingan padatan bukan lemak

    10 = Susu Skim : Ubi Jalar = 0% : 10%

    75 = Susu Skim : Ubi Jalar = 2,5% : 7,5%

    05 = Susu Skim : Ubi Jalar = 5% : 5%

    25 = Susu Skim : Ubi Jalar = 7,5% : 2,5%

    00 = Susu Skim : Ubi Jalar = 10% : 0% (Kontrol)

Peningkatan konsentrasi subtitusi susu skim dengan ubi jalar kukus tampaknya dapat meningkatkan kekentalan (viskositas) ICM sehingga semakin membatasi mobilitas molekul air karena ruang antar partikel di dalam ICM menjadi semakin sempit. Sempitnya ruang antar partikel menyebabkan udara yang masuk ke dalam ICM selama agitasi semakin sedikit sehingga nilai over run yang dihasilkan semakin rendah. Hal ini dapat dilihat dari hasil pengamatan over run pada Tabel 3, dimana dengan semakin banyaknya penggunaan umbi ubi jalar kukus sebagai pensubtitusi susu skim, nilai over run cenderung semakin rendah.Over run yang terlalu rendah dapat menyebabkan es krim beku menjadi produk yang terlalu keras dan lembek seperti puding; sementara over run yang terlalu tinggi menyebabkan es krim terlalu lunak, cepat meleleh, dan memiliki rasa yang hambar (Suprayitno, E, dkk, 2001),

Turunnya nilai over run disertai dengan semakin tahannya es krim terhadap proses pelelehan dari suhu beku ke suhu ruang sehingga diperlukan waktu yang lebih lama untuk melelehkan es krim. Dari hasil pengamatan terhadap kecepatan meleleh es krim ubi jalar, tampak bahwa es krim dengan over run rendah memiliki kecepatan meleleh yang cenderung lebih lama (Tabel 3).

Kecepatan meleleh es krim sangat dipengaruhi oleh bahan-bahan yang digunakan dalam pembuatan ICM, Es krim yang baik adalah es krim yang tahan terhadap pelelehan pada saat dihidangkan pada suhu ruang. Es krim yang cepat meleleh kurang disukai karena es krim akan segera mencair pada suhu ruang; namun juga perlu diperhatikan bahwa es krim yang lambat meleleh atau kecepatan melelehnya terlalu rendah juga tidak disukai oleh konsumen karena bentuk es krim yang tetap (tidak berubah) pada suhu ruang sehingga memberikan kesan terlalu banyak padatan yang digunakan (Padaga, M, dkk, 2005). Dari hasil pengamatan terhadap nilai over run dan kecepatan meleleh es krim ubi jalar, es krim dengan perlakuan perbandingan susu skim dan ubi jalar 7,5% : 2,5% menunjukkan mutu es krim yang baik.

KESIMPULAN

  1. Subtitusi susu skim sebagai padatan bukan lemak dalam pembuatan es krim dengan ubi jalar kukus dapat diterima oleh panelis.
  2. Perbedaan konsentrasi subtitusi susu skim dengan ubi jalar kukus berpengaruh terhadap mutu es krim.
  1. Es krim yang dibuat dari susu skim dan ubi jalar kukus dengan perbandingan 3 : 1 (7,5% : 2,5%) menunjukkan mutu es krim yang baik.

DAFTAR PUSTAKA

Hartoyo, T, 2004, Olahan dari Ubi Jalar, Trubus Agrisarana, Surabaya.

Padaga, M dan M, E, Sawitri, 2005, Es Krim yang Sehat, Trubus Agrisarana, Surabaya.

Rukmana, H, R, 2001, Aneka Keripik Umbi, Kanisisius, Yogyakarta.

Suprayitno, E, H, Kartikaningsih, dan S, Rahayu, 2001, Pembuatan Es Krim dengan Menggunakan Stabilisator Natrium Alginat dari Sargassum sp, Dalam Jurnal Makanan Tradisional Indonesia ISSN: 1410-8968, Vol, 1 No, 3, Hal, 23-27.


PEMBUATAN SARI TEMPE

PEMBUATAN SARI TEMPE

Fitri (1997) menyatakan bahwa susu tempe merupakan suatu sistem koloid yang kompleks dengan mengandung garam dan gula dalam bentuk terlarut dalam air. Susanto (1997) menambahkan, kandungan protein dalam susu tempe yang dihasilkan dari ekstraksi dengan air panas berkisar antara 2,68 % sampai 3,26 % .

Widaryanti (1997) menemukan bahwa penambahan stabilizer dapat meningkatkan rasa di mulut (mouth feel) dari susu tempe dan juga menjadikan viskositasnya lebih baik. Kenampakan produk juga menjadi lebih baik karena semakin sedikit endapan selama penyimpanan. Penambahan stabilizer dapat memerangkap lebih banyak air sehingga suspensi susu dapat lebih stabil.

Penggunaan stabilizer dapat mengurangi derajat pengendapan pada susu tempe. Persen pengendapan dari susu tempe dipengaruhi oleh protein yang terdenaturasi karena sifat fisisnya menurun sehingga mengendap (fitri, 1997)

Widaryati (1997) menambahkan, ekstraksi dengan menggunakan air bersuhu tinggi cenderung mengurangi daya terima (rasa) dari susu tempe. Penggunaan sair panas 100 C menghasilkan produk yang sedikit pahit yang disebabkan oleh adanya L-konfigurasi asam amino.

Keefektifan ekstraksi disebabkan oleh suhu air yang digunakan. Kandungan total N-amino dan densitas susu akan meningkat dengan semakin tingginya suhu air ekstraksi. Pertambahan nilai densitas susu berhubungan dengan pertambahan protein dan kandungan N-amino dalam susu. Nilai densitas susu tempe antara 1,025-1,027 dimana hampir sama dengan nilai densitas susu sapi. Semakin tinggi nilai densitas susu menunjukkan banyak larutan padatan yang dapat terekstrak dengan menggunakan air panas (Widaryanti, 1997)

Menurut Astawan (1991), pembuatan susu tempe secara garis besar yaitu pengukusan tempe, penghancuran sambil ditambahkan air mendidih kemudian bubur yang dihasilkan disaring, ditambahkan gula, garam dan essense secukupnya lalu dipanaskan dan dibiarkan mendidih sebentar samabil diaduk terus lalu dimasukkan dalam botol bersih selanjutnya dipasteurisasi.

Pengukusan tempe dimaksudkan untuk menginaktifkan enzim, menghentikan pertumbuhan jamur dan mengurangi bakteri kontaminan. Sebagian enzim pada bahan pangan dan mikroorganisme dapat dihancurkan pada suhu 79,4 C. Jumlah air yang ditambahkan dalam penghancuran tempe menentukan kualitas dan harga produk yang dihasilkan. Penyaringan dilakukan segera setelah menjadi bubur tempe (Fitri, 1997)

Astawan (1991) menyatakan penyaringan dilakukan dengan 2 tahap, pertama penyaringan kasar dan kedua penyaringan halus. Penyaringan bertujuan untuk mendapatkan susu tempe yang bersih dan tidak mengandung ampas karena akan mengganggu rasa dan kenampakannya. Penyaringan kasar dilakukan dengan saringan plastik biasa dan penyaringan halus dilakukan dengan kain saring.


KALSIUM UNTUK TUBUH

 

KALSIUM UNTUK TUBUH


Mineral

Mineral merupakan unsur yang dibutuhan oleh tubuh manusia yang mempunyai peranan penting dalam pemeliharaan fungsi tubuh, baik pada tingkat sel, jaringan, organ, maupun fungsi tubuh secara keseluruhan. Unsur ini digolongkan ke dalam mineral makro dan mineral mikro. Mineral makro adalah mineral yang dibutuhkan tubuh dalam jumlah lebih dari 100 mg sehari, misalnya natrium, klor, kalsium, kalium, magnesium, sulfur dan fosfor, sedangkan mineral mikro dibutuhkan kurang dari 100 mg sehari, misalnya besi, iodium, mangan, tembaga, zink, kobalt dan fluor (Almatsier, 2009). Selain itu ada sebuah istilah lain yang disebut trace element’s, yaitu mineral yang dalam keadaan alami berjumlah sangat sedikit, misalnya barium, brom, stronsium, emas, perak, nikel, aluminium, timah, bismuth, gallium, silikon dan arsen (Poedjiadi, 2009).

Kalsium

Kalsium adalah mineral yang paling banyak ditemukan dalam tubuh manusia. Kadar kalsium mencapai jumlah 2% dari berat total tubuh, 99% kalsium tersebut berada dalam jaringa keras, tulang dan gigi yang 1 % nya lagi berada dalam darah. Kalsium merupakan komponen penting dalam pembentukan tulang dan gigi serta mencegah osteoporosis. Selain itu kalsium juga penting dalam kehidupan sel dan cairan jaringan, aktivitas beberapa sistim enzim, membantu dalam proses kontrasi otot dan menjaga normalitas kerja jantung. Kekurangan kalsium dapat menyebabkan terhambatnya pertumbuhan tulang dan gigi, riketsia pada anak – anak dan dapat mengakibatkan osteoporosis (tulang rapuh) (Poedjiadi, 2009).

Fungsi Kalsium

Kalsium adalah komponen penting dari tulang, jadi dapat dipastikan makanan berkalsium rendah berarti tulang yang tidak sehat. Bila kita sering mengatakan bahwa osteoporosis pada wanita diakibatkan oleh kekurangan estrogen, hal yang sama dapat berlaku karena kekurangan kalsium. Pemasukan kalsium yang rendah mengakibatkan berkurangnya masa tulang karena merangsang lepasnya hormone parathyroid, yang menarik kalsium dari tulang. Jika pemasukan kalsium rendah berlangsung lama, tulangnya akan semakin lemah (E. Lane, 2001).

Kalsium juga berfungsi dalam pembentukan gigi, kekurangan kalsium selama masa pembentukan gigi dapat menyebabkan kerentanan terhadap kerusakan gigi. Selain itu kalsium juga berperan pada proses fisiologik dan biokimia tubuh seperti eksitabilitas syaraf otot, kerekatan seluler, transmisi impul- impul saraf, memelihara dan meningkatkan fungsi membran sel, mengaktifkan enzim dan sekresi hormon. Kerangka tulang yang merupakan cadangan besar kalsium kompleks yang tidak larut, berada dalam keseimbangan dinamik dengan kalsium bentuk larut dalam sirkulasi (Suhardjo, 2000).

Hal Yang Mempengaruhi Absorpsi Kalsium

Penyerapan kalsium dipengaruhi umur dan kondisi tubuh. Pada usia kanak-kanak atau masa pertumbuhan, sekitar 50-70% kalsium yang dicerna diserap. Tetapi pada usia dewasa, hanya sekitar 10-40% yang mampu diserap tubuh. Penyerapan kalsium terjadi pada usus kecil bagian atas, tepat setelah lambung. Penyerapan kalsium dapat dihambat apabila ada zat organik yang dapat bergabung dengan kalsium dan membentuk garam yang tidak larut. Contoh senyawa organik tersebut adalah asam oksalat dan asam fitat (Winarno, 2004).

Kalsium dan asam oksalat akan membentuk garam kalsium oksalat yang tidak larut. Asam oksalat banyak ditemukan dalam bit yang masih hijau, bayam rhubarb dan coklat. Asam fitat banyak terkandung dalam bekatul gandum merah (Winarno, 2004).

Serat dapat menurunkan absorpsi kalsium, karena serat menurunkan waktu transit makanan dalam saluran cerna, sehingga menurunkan kesempatan untuk absorpsi. Keadaan stres mental juga dapat menurunkan absorpsi dan meningkatkan ekskresi kalsium. Dalam suasana basa dengan fosfor, kalsium membentuk kalsium fosfat yang tidak larut air yang dapat menyebabkan absorpsi kalsium (Winarno, 2004).

Sumber Kalsium

Susu dan produk olahan susu seperti keju dan es krim merupakan sumber kalsium yang utama. Sayuran tertentu seperti brokoli, kacang-kacangan dan buah- buahan juga merupakan sumber kalsium, selain itu ikan yang dimakan dengan tulangnya termasuk ikan kering merupakan sumber kalsium yang baik. Serelia, kacang-kacangan dan hasil olahannya seperti tahu dan tempe, dan sayuran hijau merupakan sumber kalsium yang baik juga. Tetapi bahan ini mengandung banyak zat-zat yang menghambat penyerapan kalsium seperti serat, fitat dan oksalat (Almatsier, 2004).

Ekskresi Kalsium

Kalsium diekskresikan lewat urine dan feses (Almatsier,2004).

 

Akibat Kekurangan Kalsium

Pada masa pertumbuhan, kekurangan kalsium dapat mengganggu pertumbuhan. Tulang kurang kuat, mudah bengkok dan rapuh. Setelah dewasa, terutama setelah usia 50 tahun, terjadi kehilangan kalsium dari tulang yang menyebabkan tulang menjadi rapuh dan mudah patah. Keadaan ini dikenal sebagai osteoporosis yang dapat dipercepat oleh keadaan stres sehari-hari. Selain itu, kekurangan kalsium juga dapat mnyebabkan osteomalasia yang biasanya terjadi karena kekurangan vitamin D dan ketidakseimbangan konsumsi kalsium terhadap fosfor. Terganggunya mineralisasi matriks tulang yang menyebabkan menurunnya kandungan kalsium dalam tulang (Almatsier, 2004).

Osteoporosis adalah penyakit tulang sistemik yang ditandai dengan rendahnya massa tulang dan terjadinya perubahan mikroarsitektur tulang sehingga tulang menjadi rapuh dan mudah patah. Osteoporosis diistilahkan juga penyakit silent disease karena sering tidak memberikan gejala hingga pada akhirnya terjadi fraktur (patah). Proses osteoporosis sebenarnya sudah dimulai sejak usia 40-45 tahun. Pada usia tersebut, baik laki-laki maupun perempuan akan mengalami proses penyusutan massa tulang yang menyebabkan kerapuhan tulang. Hanya saja pada perempuan proses kerapuhan tulang menjadi lebih cepat setelah menopause karena kadar estrogen yang mempengaruhi kepadatan tulang sangat menurun (Dalimartha, 2002).

Osteoporosis dapat didiagnosis melalui suatu jenis pemeriksaan yang disebut DXA (dual X-ray absorptiometry) scan. DXA secara langsung mengukur kepadatan tualng pada panggul, punggung dan biasanya dilakukan dirumah sakit. Kepadatan tulang hasil pengukuran akan dibandingkan dengan pengukuran rata- rata untuk dewasa muda yang sehat sesuai jenis kelamin (Fox specer & Brown,2007).

 


Pengenalan Alat Spektrofotometer, Matching Kuvet dan Pembuatan Spektrum Serapan

Pengenalan Alat Spektrofotometer, Matching Kuvet dan Pembuatan Spektrum Serapan

Pengenalan Alat Spektrofotometer, Matching Kuvet dan Pembuatan Spektrum Serapan
Tujuan: Untuk mengetahui komponen utama Alat Spektrofotometer, cara pengoperaian, cara melakukan Cuvet Matching dan membuat Spektrum Serapan
Dasar Teori:
Komponen Utama alat spektrofotometer, pada prinsipnya dapat digambarkan sebagai diagram blok berikut:

Diagram Blok Komponen-komponen Utama Alat Spektrofotometer (click untuk maximize)


Alat akan mengukur nilai intensitas cahaya: P dan Po melalui sistem processor, akan diubah menjadi besaran transmitansi (T), dan absorbsi (A), yang memiliki rumusan sebagai berikut:


Sumber sinar sebagai penyedia radiasi sinar (polikromatis) (biasanya lampu wolfram).
Sistem monokromator: mengubah gelombang cahaya polikromatik menjadi monokromatik.
kuvet: sebagai tempat menaruh larutan sampel dan blanko ke dalam berkas cahaya spektrofotometer.
detektor: mengubah isyarat radiasi menjadi isyarat listrik.
read out: mengubah sinyal-sinyal listrik dari detektor menjadi numerik yang dapat dibaca dalam bentuk &T atau absorbansi.
A = – log T
Sebelum dioperasikan, alat harus dikalibrasi dulu, yaitu dengan menentukan 0% T dan 100% T. Kalibrasi ini berguna agar hasil analisis dari alat tersebut lebih akurat.
Pada pekerjaan analisis yang sesungguhnya, semestinya selalu diawali dengan matching cuvet yang bertujuan untuk mengetahui apakah cuvet yang digunakan mempunyai diameter (nilai b) yang sama. Hal ini perlu dilakukan, karena menurut hukum Lambert-Beer nilai A berbanding lurus dengan nilai b dan C (konsentrasi larutan). Setelah dilakukan matching cuvet, pekerjaan dilanjutkan dengan mengetahui spektrum serapan larutan yang dianalisis. Dari spektrum-spektrum itu, akan dapat diketahui panjang gelombang dimana zat akan melakukan penyerapan maksimum (panjang gelombang = maksimum).
ohya, *)kuvet ada dua yaitu : kuvet permanent (terbuat dari gelas atau leburan silica) dan kuvet disposable (dari plastic atau Teflon).
Kuvet dari leburan silica dapat digunakan = 190-1100 nm
Kuvet dari bahan gelas = 380-1100 nm
Cara Kerja
A. Alat dan Bahan
-seperangkat alat Spektofotometer
-Gelas ukur dan peralatan gelas lainnya.
B. Bahan
– larutan CoCl2 (warna larutan merah jambu)
C. Cara Kerja (saya singkat aja ya, he3x)
- kalibrasi alat spektrofotometer (tergantung model alat)
Kalibrasi yang dimaksud ini adalah men-seting blank alat spektrofotometer, sebelum digunakan untuk analisis. Secara umum sbb:
1. Nyalakan alat spektrofotometer
2. Isi kuvet dengan larutan blanko (aquades)
3. Diseting/diatur panjang gelombang untuk kalibrasi.
->keterangan: 0%T itu diukur saat kuvet dalam keadaan kosong. 100%T itu diukur saat kuvet dalam keadaan terisi larutan.
4. Kuvet berisi larutan blanko dimasukkan ke spektrofotometer
5. lalu tekan tombol 0 ABS 100%T, tunggu sampai keluar kondisi setting blank (dalam bentuk teks)
matching cuvet
Sediakan paling tidak 3-5 cuvet.
Disiapkan larutan CoCl2 dan aquades (blanko).
Atur posisi 0%T dan 100%T.
Ukur %T dari larutan CoCl2 dengan menggunakan cuvet-cuvet tadi. Tandai cuvet yang menghasilkan %T yang sangat mendekati sama (lebih baik  “sama” jika memungkinkan). Kuvet yang matching ini akan mempunyai ketebalan sama. Ukur juga ketebalan (diameter) kuvet. Biasanya 1 cm.
Ambil 2 cuvet yang “matching” untuk percobaan, misalnya kuvet I dan kuvet II. Dua kuvet ini akan digunakan selanjutnya.
D. Membuat Spektrum Serapan
– disiapkan 2 cuvet tadi. kuvet I diisi blanko, sedangkan kuvet II untuk diisi larutan CoCl2 untuk dibuat spektrum serapannya.
– diukur %T larutan CoCl2 mulai panjang gelombang 490-520nm (karena secara teori daerah serapan larutan CoCl2 berada di panjang gelombang disekitar 510nm). Pengukurannya dimulai dari panjang gelombang 490-500 dengan interval 5nm, lalu 500-510 dengan interval 1 nm (dibuat kecil karena mendekati teori), lalu 510 – 520 dengan interval 1nm juga.
kemudian dibuat tabel

Contoh tabel pengamatan absorbansi sebagai fungsi gelombang

Contoh hasil Kurva Absorbansi CoCl2



dari Kurva tersebut, dapat diperoleh lamda (panjang gelombang) maksimal dimana larutan CoCl2 mempunyai serapan maksimal (A maks).
Spektrofotometer digunakan di atas cukup dengan S. berkas tunggal. Adapun S. berkas ganda lebih mahal harganya.

Spektrofotometer berkas tunggal Spektrofotometer berkas ganda
Penentuan spektrum serapan secara manual, sehingga boros waktu >>Secara otomatis, sehingga hemat waktu.
Harga lebih murah Lebih mahal
Baik untuk analisa kualitatif Baik untuk analisa kuantitatif, karena lebih akurat.
Alat Spektrofotometer (lebih modern: tinggal tekan tombol aja he3x)
Cuvet berbentuk tabung


beberapa pengenceran larutan untuk kalibrasi dalam gelas ukur ukuran 50 mL

Contoh Gambar Cuvette

Cuvet berbentuk persegi panjang lebar

diameter ± 1 cm

±

**)Spectronic-20 (model lama: masih manual) dan kuvet dari gelas yang berbentuk tabung

Catatan kaki:
*)Macam kuvet ini saya peroleh dari http://himdikafkipuntan.blogspot.com/2008/04/spektrofotometri-serapan-atom.html
**)Gambar dari http://file.upi.edu/Direktori/D%20-%20FPMIPA/JUR.%20PEND.%20KIMIA/195807121983032%20-%20ANNA%20PERMANASARI/presentasi%20kuliah/Pengantar%20Kuliah%20spektro.pdf

http://logku.blogspot.com/


PEDASNYA CABAI DAN SAMBAL

PEDASNYA CABAI DAN SAMBAL
Ngomong-ngomong soal cabe, apa ya cabe terpedas di dunia? Saya belum pernah coba macam-macam cabe, cuz mag saya bisa kambuh. he3x. However, paling tidak dengan membaca dari pengalaman seseorang, itupun sudah cukup untuk mengetahui rasa cabe yang belum kita ketahui atau yang belum kita rasakan.
Cabai adalah tumbuhan anggota genus Capsicum. Buahnya dapat digolongkan sebagai sayuran maupun bumbu, tergantung bagaimana digunakan. Sebagai bumbu, buah cabe yang pedas sangat populer di Asia Tenggara sebagai penguat rasa makanan. Bagi seni masakan Padang, cabe bahkan dianggap sebagai “bahan makanan pokok”. Sangat sulit bagi masakan Padang dibuat tanpa cabai. Tapi tahukah anda bahwa ada ukuran resmi untuk mengukur tingkat kepedasan cabai?
Tingkat kepedasan cabai dapat di ukur dengan menggunakan skala Scoville Heat Unit (SHU). Skala ini ditemukan pada tahun 1912 oleh seorang ahli kimia berkebangsaan Amerika, Wilbur Scoville dengan menggunakan metode Scoville Orgaoleptic Test. Metodenya cukup sederhana, yaitu dengan mencampur ekstrak cabai dengan air gula. Campuran ini kemudian di ukur kepedasannya oleh para panelis yang biasanya terdiri dari 5 orang. Air gula akan di tambahkan secara terus menerus hingga rasa pedas tidak terdeteksi oleh para panelis tersebut. Tingkat pencampuran itu memberikan ukuran bagi skala Scoville ini. Cabai manis yang tidak mengandung capsaicin sama sekali, pada skala Scoville nilainya nol. Sebaliknya, cabai yang mempunyai peringkat 300.000 menunjukkan bahwa ekstraknya harus dicampurkan 300.000 kali lipat sebelum capsaicin yang hadir di dalamnya tidak terasa lagi. Metode ini masih memiliki kekurangan karena adanya potensi subyektivitas dari panelis yang menguji. Karena itu saat ini sedang di kembangkan juga metode HPLC .
Dari beberapa jenis cabai yang pernah di teliti, Dorset Naga Jolokia dari India di nobatkan sebagai cabai terpedas di dunia versi Guinees Book of Record dengan rating hingga 1.041.247 SHU, setelah menumbangkan Cabai Red Savina Habanero dari Meksiko yang memiliki rating hingga 577.000 SHU. Sekarang juga muncul, infinite chili dari kota Kota Grantham yang meng-klaim sebagai cabai terpedas di dunia saat ini.
Cabai yang paling tidak pedas adalah paprika atau bell pepper, karena buah ini tidak mengandung capsaicin dengan SHU sebesar 0 (nol).
Berikut ini adalah daftar skala kepedasan scoville (dari en wikipedia) :

Skala Scoville Jenis Cabai
15,000,000–16,000,000 Capsaicin murni
9,100,000 Nordihydrocapsaicin
2,000,000–5,300,000 Semprotan cabai standar Amerika
855,000–1,041,427 Naga Jolokia
350,000–577,000 Red Savina Habanero
100,000–350,000 Habanero Chile, Scotch Bonnet
100,000–200,000 Rocoto, Jamaican Hot Pepper
50,000–100,000 Thai Pepper,Malagueta Pepper, Chiltepin Pepper
30,000–50,000 Cayenne Pepper, Ají pepper, Tabasco pepper
10,000–23,000 Serrano Pepper
7,000–8,000 Tabasco Sauce (Habanero)
5,000–10,000 Wax Pepper
2,500–8,000 Jalapeño Pepper
2,500–5,000 Tabasco Sauce (Tabasco pepper)
1,500–2,500 Rocotillo Pepper
1,000–1,500 Poblano Pepper, Texas Pete sauce
600–800 Tabasco Sauce (Green Pepper)
500–1000 Anaheim pepper
100–500 Pimento, Pepperoncini
0 No heat, Bell pepper / Paprika

Nah inilah keterangan lebih lanjut mengenai cabe-cabe berdasarkan tingkat kepedasannya yang diukur menggunakan Scoville rating.
1. Bell pepper

Scoville rating: 0
Bell pepper ini adalah sejenis paprika, biasanya terdapat dalam 4 warna, yaitu merah, kuning, hijau, oranye. Bell Pepper kadang dikelompokkan ke dalam cabe yang kurang pedas atau “sweet peppers”. Namun terdapat paprika langka berwarna putih dan ungu, tergantung dimana mereka ditanam dan dari varietas apakah mereka. Paprika hijau berasa lebih pahit dibandingkan dengan paprika merah, kuning atau oranye.
2. Pimento

Scoville rating: 100-500
Pimento atau cabe cheri adalah cabe yang besar, merah berbentuk seperti hati, panjang antara 7 – 10 cm lebar 5-7 cm. Daging buahnya termasuk manis, berair, dan lebih beraroma dibandingkan dengan paprika merah. Namum beberapa varietas dari pimento ini cukup pedas. Pimento atau pimentão sendiri adalah bahasa Portugis dari “bell pepper”.
3. Anaheim Pepper

Scoville rating : 500-2500
Nama Anaheim sebenarnya adalah nama sebuah daerah. Nama itu diberikan karena ada seorang petani bernama Emilio Ortega yang membawa benih cabe ini ke daerah Anaheim pada awal tahun 1900. Sebutan lainnya adalah California Chile atau Magdalena. Varietas cabe ini yang tumbuh di New Mexico memiliki tingkat kepedasan yang lebih tinggi, yaitu sekitar 4500 sampai 5000 Scoville units.
4. Jalapeño

Scoville rating : 2500-8000
Bentuknya kaya terong, tapi itu bukan terong, itu cabe jalapeño. Cabe ini sudah termasuk panas, dan sudah dapat memberikan sensasi terbakar saat memakannya (pedas). Panjang cabe ini antara 5 – 9 cm. Cabe ini berasal dari Meksiko. Di Meksiko terdapat lahan seluas 160 km persegi yang hanya digunakan untuk menanam cabe jenis ini! Daerahnya terutama di lembah sungai Papaloapan, sebelah utara Veracruz
5.Serrano Pepper

Scoville rating : 10.000-23.000
Cabe ini juga dari Meksiko, di daerah pegunungan Meksiko. Rasa pedasnya menggigit, lebih pedas dari jalapeño, dan biasanya dimakan mentah – mentah. Bentuknya memang mirip dengan cabe rawit dari Indonesia, tapi ini adalah spesies yang berbeda.
6.Cayenne pepper

Scoville rating : 30.000-50.000
Merah Cabe! Benar-benar cabe yang menunjukkan ke-cabe-annya melalui warnanya. Cabe ini namanya Cayenne atau Guinea Pepper atau Bird Pepper. Cabe ini adalah cabe merah yang pedas, digunakan untuk bumbu masakan ataupun untuk keperluan medis. Namanya berasal dari kota Cayenne di French Guiana. Cabe ini digunakan untuk masakan pedas, baik dalam bentuk utuh ataupun bubuk. Bahkan cabe ini juga digunakan untuk herbal.
7.Thai Pepper

Scoville rating: 50.000–100.000
Thai Pepper dalam bahasa Indonesia: Cabe Rawit ;Sunda: Cengek ;bhs Thailand Thai: พริกขี้หนู phrik khi nu; Tagalog:siling labuyo. Cabe ini banyak terdapat di Thailand dan tetangganya seperti Kamboja, Vietnam, Indonesia, dan sekitarnya. Ternyata orang Indonesia memang kuat pedas, buktinya cabe yang biasa “dimakan” sehari-hari saja berada di ke-4. Tapi, cabe yang berasal dari thailand masih kalah pedas dari cabe indonesia, mungkin juga dipengaruhi tempat dan kualitas.
8.African Birdseye

Cabe ini aslanya dari benua Afrika dan sangat-sangat ‘spicy’ dan biasanya dipakai sebagai bumbu masakan ala Portugis. Nama kerennya adalah Piri-Piri. di daerah timur Afrika, saus cabe ini dipergunakan sehari-hari sebagai bumbu masakan, seperti untuk masakan ayam dan makanan pedas lainnya. Warnanya bisa merah, kuning atau ungu.

Tanaman cabe ini amat rimbun dan tumbuh di ketinggian 45 -120 centimeter, dengan panjang daunnya 4–7 cm dan lebarnya 1.3 – 1.5 cm. Buah cabenya meruncing ke bentuk yang tumpul dan panjang buahnya mencapai 8 – 10 centimeter. Jika belum matang, warna buahnya adalah hijau dan menjadi merah atau ungu jika matang. Beberapa vaitas cabe ini dapat memiliki nilai SHU(Scoville Heat Units: satuan pedas Scoville) sampai 175,000.
9. Cabai Datil(mencapai 300,000 SHU)

Cabe ini sering dibandingkan dengan Habanero, tetapi bisa jadi lebih banyak variasinya lagi. Menurut beberapa orang, Datil tidak terlalu berbeda dengan Habanero, namun studi menunjukkan bahwa Habanero rasanya sedikit lebih pedas. Datil ditanam di daerah Florida, dimana telah digjadikan bahan pembuatan saus dan produk lainnya selama lebih dari 20 tahun.
Datil ditanam di seluruh Amerika Serikat dan tempat lain, tetapi sebagian besar diproduksi di St Augustine, Florida. Meskipun dari sumber pengetahuan setempat menunjukkan cabe ini dibawa ke St Agustinus oleh pekerja dari daerah Menorca di akhir abad 18 dan hal itu menunjukkan bahwa asalnya dari negara Chili sekitar tahun 1880 oleh seorang pembuat jelly bernama SB Valls. Cabe Datil digunakan oleh komunitas Minorcan sebagai makanan dan ditunjukkan di banyak resep yang mereka pergunakan.Banyak produsen komersial ini di St Augustine dan juga telah diadakan festival tahunan untuk tanaman cabe Datil.
10. Habanero pepper

Scoville rating : 100.000–350.000
Saat mentah berwarna hijau, saat matang warnanya oranye atau merah. Namun kadang terlihat juga warna putih, coklat dan bahkan pink! Ukuran panjang sekitar 2-6 cm. Cabe ini banyak berasal dari Yucatan dan daerah sekitar pantainya. Nama cabe ini berasal dari kota di Cuban, kota di La Habana. Walaupun tempat itu bukanlah tempat asalnya, namun cabe ini banyak deperjualbelikan disana.
11. Red Savina Pepper

Scoville rating : 350.000-580.000
Cabe ini adalah varietas khusus dari cabe Habanero, yang dikembangbiakkan khusus agar mendapat cabe yang lebih pedas, besar dan berat. Frank Garcia di Walnut, California adalah pengembang cabe Red Savina ini. Metodenya masih rahasia dan tidak diketahui umum. Cabe ini memegang rekor sebagai cabe terpedas di dunia dari tahun 1994 sampai 2006 dan dicatat oleh Guinness World Records. Namun pada Februari 2007, cabe ini harus turun dari singgasananya, dikalahkan oleh cabe Bhut Jolokia.
12.Bhut Jolokia (a.k.a Naga morich, Naga Jolokia)

Scoville rating : 855.000-1.050.000
Cabe ini telah dikonfirmasikan oleh Guiness World Record sebagai cabe terpedas di dunia pada Februari tahun 2007, menggantikan Red Savina. Cabe ini berasal dari daerah Assam di timur laut India, cabe ini juga tumbuh di Nagaland dan Manipur. Terdapat sedikit keraguan mengenai spesies dari cabe ini, apakah masuk ke dalam capsicum frutescens atau capsicum chinense, namun berdasarkan tes DNA diketahui bahwa ini adalah spesies hibrida, dengan dominan capsicum chinense dan sedikit capsicum frutescens. Cabe ini memiliki banyak nama mulai dari Naga Jolokia, Ghost Pepper atau California Death Pepper. Cabai ini dinamai cabai setan (ghost pepper), mungkin karena setan pun gak mau makan cabe itu karena pedas banget, atau mungkin yang makan cabai itu akan teriak-teriak mengusir setan.hahaha. Ohya, saya baca di page ini tentang orang di jogja yang pernah nanam cabai ini, bilang kalau rasa pedasnya kurang nendang. Dia menyimpulkan kalu faktor cuaca yang mempengaruhinya. Saya pikir pendapatnya benar, kepedasan suatu cabe tergantung dari kosentrasi air dalam cabe tersebut. Jika terlalu banyak, mungkin tidak pedas, mengingat wilayah Indonesia sekarang kan sering hujan. Juga ada yang bilang, kalau cabe pada musim panas lebih pedas daripada cabe musim gugur.
13.Cabe dengan kepedasan extraordinary: infinity chili

Cabai yang dikenal dengan infinity chili ini berhasil mengalahkan rekor Bhut Jolokia sebagai cabe terpedas didunia, dengan satuan ukuran rasa pedas sebesar 1,17 juta skala scoville. Sungguh luar biasa. Pengen coba? Lebih baik jangan, bisa kebakaran hutan nanti, hahaha… just Kidding. Berikut cerita selengkapnya dari vivanews:
Cabe ini berasal dari Kota Grantham, kota yang cukup masyur sebagai kota kelahiran Mantan Perdana Mentri Inggris, Margaret Thatcher. Kini, kemasyurannya bertambah setelah kota yang terletak di Lincolnshire ini menjadi kota pengekspor cabai terpedas di dunia. Petani setempat tengah mengembangkan cabai dengan tingkat kepedasan mencapai 1,17 juta skala scoville, satuan ukuran rasa pedas.
Tingkat kepedasan yang sungguh luar biasa hingga mendapat peringatan kesehatan. Bahkan, masuk dalam Guinness Book of Records, mengalahkan cabai sebelumnya Bhut Jolokia, dari India.
Dikembangkan oleh Nick Woods, 39, budidaya cabai ‘infinity chili’ tersebut dilakukan di rumah kaca. Penemuan cabai itu bermula dari sebuah ‘kecelakaan’ persilangan cabai.
“Aku tidak sengaja untuk mengembangkannya. Aku melakukan persilangan cabai di rumah kaca. Suatu hari aku melihat ada tanaman cabai baru yang tumbuh,” kata Woods, seperti dikutip dari Telegraph.
“Ketika saya mencoba, rasanya cukup enak, seperti rasa buah yang aneh, tetapi kemudian ada rasa tertunda yang kemudian sangat pedas. Tiba-tiba saya merasa seperti terbakar di bagian belakang tenggorokan, sangat panas sehingga saya tidak bisa berbicara,” katanya.
Setelah mencobanya, Woods merasa gemetaran tidak terkontrol. Ia merasa sakit secara fisik. “Saya tidak merekomendasikan siapapun memakannya dalam keadaan mentah,” katanya.

Itu dia juara cabai yang terpedas di dunia. Nah, sekarang, saya pengen makan olahan dari cabe yaitu sambal. Dah tahu belum, sambal bisa mencegah stroke dan impotensi, lho. Gak usah terlalu jauh cari obat jika belum kena penyakit, lebih baik cari pencegah sebelum penyakit itu datang, betul gak? Ntahlah..hahaha.
Berikut adalah informasi tentang sambal:
Di balik nikmatnya sambal, yang juga mampu merangsang nafsu makan, terdapat zat-zat gizi yang dapat mencegah terjadinya stroke, penyakit jantung, dan impotensi.
Sambal tentu bukan merupakan makanan yang asing bagi kita. Bagi mereka yang menyukai rasa pedas, sambal menjadi menu favorit yang harus selalu ada di meja makan. Tanpa kehadiran sambal, beberapa jenis hidangan menjadi terasa hambar dan kehilangan makna.
Sambal memang merupakan menu yang mempunyai keistimewaan tersendiri. Sebuah restoran atau rumah makan bisa sangat terkenal dan ramai hanya karena sambalnya yang sangat enak. Bagi yang menyukainya, sambal dapat membuat selera makan meningkat.
Masyarakat Padang menyebut sambal sebagai King of Food. Buat mereka, tanpa sambal layaknya makan nasi tanpa garam. Masyarakat Sunda juga merupakan salah satu penggemar sambal yang sering dicocol dengan lalapan.
Bahan utama pembuatan sambal adalah cabai yang dihancurkan, sehingga keluar kandungan airnya dan ditambahkan dengan bahan-bahan lain seperti garam, cuka, dan terasi.
Sambal merupakan salah satu ciri khas hidangan masyarakat Melayu yang gemar makanan pedas. Saat ini sambal sudah ada yang dijual dalam kemasan. Namun, masih banyak masyarakat yang lebih senang membuat sambal sendiri. Cara ini lebih sesuai dengan selera.
Jenis Sambal
Di Indonesia, ada bermacam-macam Sambal yang berasal dari berbagai macam suku. Suku Padang biasanya lebih menyukai sambal yang sangat pedas, sedangkan suku Sunda lebih menyukai sambal yang manis.
Suku Tionghoa keturunan Pontianak menyukai sambal yang merupakan kombinasi cabai rawit dan kecap asin. Sementara suku Tionghoa keturunan Bangka lebih menyukai sambal yang merupakan kombinasi cabai rawit dengan cuka makan.
Masyarakat Sulawesi menyukai sambal yang dikombinasi dengan tomat hijau, sedangkan penduduk Sumatera Selatan sangat menyukai sambal lingkung. Sambal lingkung dibuat dari campuran cabai merah, kelapa parut yang telah disangrai, dan daging ikan giling. Ikan yang biasa digunakan adalah ikan tenggiri dan ikan gabus.
Ada beberapa jenis sambal yang terkenal antara lain sambal asam, yaitu sambal yang menggunakan asam jawa. Ada pula sambal bajak. Cabai yang digunakan untuk membuat sambal ini digoreng terlebih dahulu dengan minyak, ditambah dengan bawang putih, terasi, dan bumbu-bumbu lainnya.
Selain itu, ada pula sambal balado yang merupakan ciri khas masyarakat Minangkabau. Cabai untuk membuat sambal ini digoreng dengan minyak, bawang putih, bawang merah atau bawang bombai, tomat, garam, dan jeruk nipis.
Ada pula sambal yang dikombinasikan dengan sea food. Masyarakat Pontianak biasa juga mengonsumsi sambal belacan, yaitu sambal yang dicampur dengan udang yang dilumatkan. Sambal ini juga dapat digabung dengan bahan lain, seperti kangkung untuk menghasilkan sambal kangkung atau dengan cumi-cumi untuk menghasilkan sambal sotong, dan dengan telur untuk menjadi sambal telur.
Sambal juga biasa dikombinasikan dengan rempah-rempah asli Indonesia, seperti sambal kemiri yang mengandung kemiri. Di Jawa sangat terkenal sambal manis yang merupakan kombinasi cabai, bawang, dan gula. Selain itu, ada pula sambal pencit, yaitu sambal yang dicampur dengan irisan buah mangga muda.
Bagi yang sangat menyukai cabai, pasti mengenal sambal setan. Sambal ini sangat pedas karena menggunakan cabai Madame Jeanette. Cabai Madame Jeanette memiliki warna kuning atau hijau muda. Cabai ini terkenal memiliki rasanya sangat pedas dan bau wangi yang khas. Namun, dari semua jenis sambal, tampaknya sambal terasi merupakan sambal yang paling terkenal.
Membangkitkan Sensasi
Di luar dugaan kita, sambal sesungguhnya merupakan bahan makanan kaya zat gizi. Cabai rawit yang merupakan komponen utama pembuatan cabai banyak mengandung vitamin C dan betakaroten (provitamin A), mengalahkan buah-buahan populer seperti mangga, nanas, pepaya, atau semangka. Bahkan kadar mineralnya, terutama kalsium dan fosfor, mengungguli ikan segar.
Sementara itu, kandungan vitamin C cabai hijau justru jauh lebih besar daripada cabai rawit. Meski demikian, asupan sambal dalam menu kita sehari-hari sangat kecil, sehingga asupan gizi yang didapat dari sambal juga sangat kecil. Komposisi zat gizi aneka cabai dapat dilihat pada tabel berikut.

Tabel Kandungan zat gizi per 100 gram aneka cabai

Komponen gizi Cabai rawit (segar) Cabai merah besar (segar) Cabai hijau besar (segar) Cabai merah besar (kering)
Energi (kkal) 103 31 23 311
Protein (g) 4,7 1 0,7 15,9
Lemak (g) 2,4 0,3 0,3 6,2
Karbohidrat (g) 19,9 7,3 5,2 61,8
Kalsium (mg) 45 29 14 160
Fosfor (mg) 85 24 23 370
Besi (mg) 2,5 0,5 0,4 2,3
Vitamin A (SI) 11.050 470 260 576
VitaminB1(mg) 0,24 0,05 0,05 0,40
Vitamin C (mg) 70 18 84 50
Air (g) 71,2 90,9 93,4 10

sumber: Direktorat Gizi, Depkes (1992)
Unsur pedas pada cabai terdapat pada komponen kapsaisin yang tersimpan dalam urat putih Cabai, tempat melekatnya biji. Banyak orang membuat sambal dengan membuang biji cabai bersama uratnya untuk mengurangi rasa pedas. Padahal, khasiat terbesar pada cabai terletak pada komponen kapsaisinnya.


Kapsaisin (wikipedia.org)

Dari wikipedia: Kapsaisin (8-metil-N-vanilil-6-nonenamida) termasuk di dalam Kapsaisinoid, yaitu zat pedas yang ada dalam tumbuh-tumbuhan, seperti cabai.
Rasa pedas ini muncul karena kapsaisin menciptakan isyarat yang sama bagi otak seperti saat kulit terkena panas. Berbeda dengan panas, rasa panas dari lidah ini hanya “rasa”, bukan terbakar sesungguhnya.
Polisi sering menggunakan kapsaisin untuk menggendalikan massa demonstran. Cairan kapsaisin ini lazim disebut “gas airmata”, yang mudah membuat iritasi orang.
Tidak semua makhluk bisa merasa pedas. Burung misalnya, sama sekali tidak dapat merasakan pedas. Jadi burung bisa mengudap cabai dengan leluasa. Penggemar burungpun sering mencampur makanan dengan kapsaisin agar tidak dimakan bajing. Bajing peka terhadap pedas, sedangkan burung sama sekali tidak berpengaruh.
Skala untuk rasa pedas Capsaicin: Rasa pedas ini diukur dengan skala yang disebut Scoville. Kapsaisin murni mengandung 15 juta Scoville.
Kapsaisin adalah kapsaisinoid yang utama didalam cabai yang diikuti oleh dihidrokapsaisin. Dua campuran ini juga adalah kapsaisinoid yang dua kali lebih panas dari nordihidrokapsaisin, homodihidrokapsaisin, dan homokapsaisin.
Berikut adalah daftar senyawa di dalam cabai dengan tingkat kepedasannya (jika keadaan murni):
1. Kapsaisin (C)
Persentase kandungan rata-rata 69% dengan skala Scoville 15.000.000.

Kapsaisin adalah zat nonpolar, tidak bisa dicampur air, persis seperti minyak. Jadi jika terasa pedas tidak akan sembuh dengan meminum air karena kapsaisin tidak larut, bahkan dengan air kapsaisin bisa merata di dalam rongga mulut.
Cara terbaik menghilangkan pedas adalah dengan lemak atau minyak. Kedua zat itu melarutkan kapsaisin sehingga mudah lenyap dari dalam mulut. Kapsaisin juga memiliki efek antikoagulan.
2. Dihidrokapsaisin (DHC)
Persentase kandungan rata-rata 22% dengan skala Scoville 15.000.000.

3. Nordihidrokapsaisin (NDHC)
Persentase kandungan rata-rata 7% dengan skala Scoville 9.100.000.

4. Homodihidrokapsaisin (HDHC)
Persentase kandungan rata-rata 1% dengan skala Scoville 8.600.000

5. Homokapsaisin (HC)
Persentase kandungan rata-rata 1% dengan skala Scoville 8.600.000

Menurut Apriadji (2001), kapsaisin bersifat antikoagulan, dengan cara menjaga darah tetap encer dan mencegah terbentuknya kerak lemak pada pembuluh darah. Kegemaran makan sambal memperkecil kemungkinan menderita penyumbatan pembuluh darah (aterosklerosis), sehingga mencegah munculnya serangan stroke dan jantung koroner, serta impotensi.
Kapsaisin juga baik dikonsumsi ketika sakit kepala menyerang. Rasa pedas dari kapsaisin dapat menghalangi aktivitas otak ketika menerima sinyal rasa sakit dari pusat sistem saraf. Terhambatnya perjalanan sinyal ini akan mengurangi rasa sakit. Pada saat yang sama kapsaisin akan mengencerkan lendir, sehingga dapat melonggarkan penyumbatan pada tenggorokan dan hidung, termasuk sinusitis.
Kapsaisin juga bermanfaat sebagai antiradang dan mengobati bengkak dan bisul. Namun, menurut Irna (2005), konsumsi kapsaisin tidak boleh berlebihan karena dapat meningkatkan asam lambung sehingga menyebabkan sakit perut.
Bila kita mengonsumsi makanan dengan sambal, biasanya selera makan meningkat. Hal itu disebabkan komponen kapsaisin pada cabai yang bersifat stomatik, yakni dapat meningkatkan gairah makan. Kapsaisin juga mempunyai kemampuan untuk merangsang produksi hormon endorfin, yang mampu membangkitkan sensasi kenikmatan, sehingga kita terus ingin mengonsumsinya.
Cabai Sebagai Bahan Utama
Cabai sudah dikenal sejak jaman prasejarah. Para arkeolog di Ekuador menemukan bukti bahwa cabai telah digunakan dalam masakan lebih dari 6.000 tahun yang lalu.
Bedasarkan publikasi pada majalah Science, orang-orang di daerah Ekuador merupakan orang pertama yang mengonsumsi cabai. Temuan itu mengindikasikan bahwa penduduk di zaman itu telah membuat sambal cabai yang dikombinasikan dengan jagung dan biji-bijian lainnya.
Cabai terdiri dari bemacam-macam jenis. Cabai yang dijual di pasar tradisional dapat digolongkan dalam dua kelompok, yaitu cabai kecil (Capsicum frustescen) dan cabai besar (Capsicum annuum). Kita biasa menyebut cabai kecil sebagai cabai rawit, sedangkan yang besar sebagai cabai merah.
Karena rasanya yang pedas, dalam buku-buku masakan Barat, cabai rawit dan cabai merah dimasukkan ke dalam kelompok cabai pedas (hot chilli pepper). Masyarakat Barat sendiri sangat menggemari cabai paprika. Cabal paprika termasuk dalam golongan cabai manis (sweet chili pepper) karena rasanya kurang pedas dan bercampur sedikit manis. Di Indonesia, cabal paprika biasa digunakan sebagai sayur.
Cabai yang paling sering digunakan untuk pembuatan sambal adalah cabai rawit. Cabai rawit ketika muda berwarna hijau muda, lalu berangsur menjadi merah tua. Cabai rawit yang sering kita konsumsi adalah cabai rawit ceplik. Cabai rawit ceplik mempunyai bentuk yang montok dan berujung tumpul.
Pernah dengar cabai puyang? Di Jawa, orang sering memesannya pada penjual jamu gendong. Dan kebanyakan yang memesan cabai puyang ini adalah perempuan yang baru saja melahirkan. Mengapa? Karena racikan cabai puyang diyakini dapat membersihkan rahim dan menyegarkan badan karena kepenatan atau kelelahan.
Cabai puyang, sebenarnya adalah suatu racikan dimana salah satu bumbunya adalah cabai jawa (piper retrofractum) yang mengandung sejumlah unsur kimia yang memiliki unsur penghilang lelah dan penyembuh penyakit. Bagian buahnya mengandung zat pedas piperine, chavicine, palmetic acids, tetrahydropiperic acids, 1 undecylenyl-3, 4-methylenedioxy benzene, piperidin, minyak asiri, N-isobutyldeka-trans-2-trans-4-dienamide, dan sesamin. Piperine mempunyai daya antipiretik, analgesik, antiinflamasi, dan menekan susunan saraf pusat. Sementara bagian akar mengandung pepirine, piplartine, dan piperlonguminine.
Cabai rawit yang paling-pedas adalah cabai jemprit. Kalau tidak hati-hati, cabai ini ketika dikonsumsi dapat mengakibatkan tersedak, batuk-batuk, bersin-bersin, atau cegukan. Cabai jemprit mempunyai bentuk kecil pendek, berujung runcing, berwarna hijau gelap dan merah setelah tua. Masyarakat Sunda menyebutnya sebagai cengek. Untuk teman makan gorengan biasanya digunakan cabai rawit yang masih muda sekali, sehingga tidak terlalu pedas rasanya.
Selain itu, masih ada cabai putih. Cabai putih merupakan salah satu jenis cabai rawit yang bentuknya menyerupai cabai jemprit; tetapi warnanya kuning pucat. Setelah tua, cabai jemprit akan berwarna merah muda hingga jingga. Cabai putih memiliki rasa lumayan pedas. Cabai putih yang berukuran besar dikenal sebagai cabai manado karena banyak digunakan dalam masakan Manado seperti tinorangsak.
Cabai merah yang berukuran besar juga sering dibuat sambal. Bentuknya ada bermacam-macam; mulai dari yang runcing mengerucut dan ada pula yang membulat. Kulit cabai merah tebal dan rasanya kurang pedas. Cabai merah, sering dinamakan cabai Bali karena lazim digunakan dalam masakan Bali.
Jenis cabai lain yang sering digunakan untuk membuat sambal adalah cabai keriting. Cabai keriting sering disebut cabai padang karena lazim digunakan dalam masakan Padang. Sambal yang menggunakan cabai keriting jauh lebih pedas dibandingkan dengan sambal yang menggunakan cabai merah. Hal itu disebabkan cabai keriting mempunyai ukuran lebih kecil dan kadar airnya lebih sedikit, sehingga komponen penyebab rasa pedasnya, yaitu kapsaisin, menjadi relatif lebih banyak.
Meskipun sangat jarang, beberapa orang juga membuat sambal dari cabai paprika. Terdapat dua jenis paprika, yaitu paprika manis yang bentuknya besar dan paprika pedas yang bentuknya lebih kecil. Paprika umumnya berwarna hijau, kemudian berubah menjadi merah. Ada pula paprika yang setelah tua berwarna jingga. Sambal yang terbuat dari paprika kurang pedas tetapi lebih renyah dengan aroma khas paprika yang harum.
Untuk membuat sambal, cabai kering jauh lebih nikmat karena lebih pedas. Sebelum dibuat sambal, cabai sebaiknya dijemur terlebih dahulu. Setelah itu, cabai dipanggang atau dibakar hingga sedikit gosong. Cabai kering bisa digunakan utuh atau dipotong-potong.
Kiat Hilangkan Rasa Pedas
Salah satu sensasi makan sambal adalah rasa pedasnya. Orang sering berupaya menghilangkan rasa pedas dengan mengonsumsi air dingin, padahal cara tersebut kurang efektif.
Untuk mengurangi rasa pedas, cobalah konsumsi susu atau yoghurt sebagai makanan penutup. Kasein susu akan melarutkan kapsaisin, sehingga rasa pedasnya secara berangsur-angsur menjadi berkurang. Rasa pedas juga dapat dihilangkan dengan mengunyah sekepal kecil nasi atau sepotong roti tawar hingga terasa manis.
Mengonsumsi gorengan yang lembab, seperti tempe goreng atau bakwan goreng, perlahan-lahan juga dapat mengurangi rasa pedas di mulut. Minyak yang terkandung dalam gorengan akan melarutkan kapsaisin, sehingga rasa pedas berangsur-angsur berkurang. Jika tidak ada gorengan, makanan penutup seperti kerupuk, rempeyek, atau rengginang, juga cukup membantu.
Hindari mengambil minuman ringan bersoda (soft drink) di kala kepedasan, apalagi minuman hangat. Langkah tersebut justru akan makin menambah panas di bibir dan memperhebat rasa pedas.
Oleh:
Prof. DR. Made Astawan
Ahli Teknologi Pangan dan Gizi
Nah, itu dia tentang sambal. Tapi, ngomong-ngomong soal sambal, cabe merah yang biasanya kita uleg, asal-usulnya berasal dari mana ya?
Berikut adalah info dari radensomad.com:
Cabai berasal dari Amerika tropis, tersebar mulai dari Meksiko sampai bagian utara Amerika Selatan. Di Indonesia, umumnya cabal dibudidayakan di daerah pantai sampai pegunungan, hanya kadang-kadang menjadi liar. Perdu tegak, tinggi 1-2,5 m, setahun atau menahun. Batang berkayu, berbuku-buku, percabangan lebar, penampang bersegi, batang muda berambut halus berwarna hijau. Daun tunggal, bertangkai (panjangnya 0,5-2,5 cm), letak tersebar.
Helaian daun bentuknya bulat telur sampai elips, ujung runcing, pangkal meruncing, tepi rata, peutulangan menyirip, panjang 1,5-12 cm, lebar 1-5 cm, berwarna hijau. Bunga tunggal, berbentuk bintang, berwarna putih, keluar dari ketiak daun. Buahnya buah buni berbentuk kerucut memanjang, lurus atau bengkok, meruncing pada bagian ujungnya, menggantung, permukaan licin mengilap, diameter 1-2 cm, panjang 4-17 cm, beutangkai pendek, rasanya pedas. Buah muda berwarna hijau tua, setelah masak menjadi merah cerah. Biji yang masih muda berwarna kuning, setelah tua menjadi cokelat, berbentuk pipih, berdiameter sekitar 4 mm. Rasa buahnya yang pedas dapat mengeluarkan air mata orang yang menciumnya, tetapi orang tetap membutuhkannya untuk menambah nafsu makan. Keanekaragaman jenis cabai merah cukup tinggi. Artinya, cabal merah memiliki beberapa varietas dan kultivar yang dibedakan berdasai-kan bentuk, ukuran, rasa pedas, dan warna buahnya. Cabai merah dapat diperbanyak dengan biji.

Nama Lokal :

NAMA DAERAH Sumatera: campli, capli (Aceh), ekiji-kiji, kidi-kidi (Enggano), leudeu (Gayo), lacina (Batak Karo), lasiak, lasina (Batak Toba), lada sebua (Nias), raro sigoiso (Mentawai), lado (Minangkabau), cabi (Lampung), cabe, lasinao (Melayu). Jawa: cabe, lombok, sabrang (Sunda), lombok, mengkreng, cabe (Jawa), cabhi (Madura), tabia (Bali): Nusa Tenggara: sebia (Sasak), saha, sabia (Bima), mbaku hau (Sumba), koro (Flores), hili (Sawu). Kalimantan: sahang (Banjar), rada (Sampit), sambatu (Ngaju). Sulawesi: rica (Mana-do), bisa (Sangir), mareta (Mongondow), malita (Gorontalo), lada (Makasar), ladang (Bugis). Maluku: manca (Seram), siri (Ambon), kastela (Buru), maricang (Halmahera), rica lamo (Ternate, Tidore), maresen (Kalawat), rihapuan (Kapaon), riksak (Sarmi), ungun gunah (Berik). NAMA ASING La chiao (C), spaanse peper (B), piment, guinea pepper,cayenne pepper, red pepper (I), poivre long (P), beisbeere, spanischer pfeffer (J). NAMA SIMPLISIA Capsici Fructus (buah cabai merah).
sumber:

http://masenchipz.com/manfaat-lebih-dari-cabai

http://www.hortichain.org/site/id/publications/article/237-top5-hot-pepper.html

http://www.indowebster.web.id/showthread.php?t=53457&page=1

melorot.blogspot.com
vivanews.com
cybertainment.cbn.net.id

http://logku.blogspot.com/


Khasiat Kandungan Bahan Kimia di dalam Jahe

Khasiat Kandungan Bahan Kimia di dalam Jahe

Pernahkah Anda minum wedang jahe, air jahe atau apa ya sebutannya? Wedang jahe iku jahe ditutu’ nggawe uleg-uleg utawa palu kayu, he2x, terus ditaruh digelas diseduh dengan air mendidih atau air panas. Yang saya tahu, wedang jahe itu digunakan untuk mengobati masuk angin, gerah, nggreges (bahasa jawa, tapi bahasa indonesianya apa ya?), dan mual-mual.
Gambar Jahe

Mungkin Anda lebih tahu dari saya mengenai khasiat jahe. Tapi, saya lebih tertarik dengan kandungan kimianya. Setelah lari kesana-kemari, saya selesai juga mencari artikel kandungan kimia dalam jahe. Mungkin dengan searh engine, Anda bisa menemukan banyak. Tapi disini, saya hanya mencatat dan merangkum apa yang saya baca.
Jahe adalah tanaman rimpang yang sangat populer sebagai rempah-rempah dan bahan obat. Rimpangnya berbentuk jemari yang menggembung di ruas-ruas tengah. Rasa dominan pedas disebabkan senyawa keton bernama zingeron. Selain zingeron, juga ada senyawa oleoresin (gingerol, shogaol), senyawa paradol yang turut menyumbang rasa pedas ini.

Zingeron (4-(4-hidroksi-3-metoksifenil)-2-butanon) Zingeron memiliki berat molekul 194,22 g/mol, titik leleh 40-410C dan titik didih 187-1880C pada 14 mmHg. Berat molekulnya yang besar dan gugus karbonil yang polar pada rantainya membuat molekul zingeron saling tarik menarik secara kuat. Hasilnya, zingeron tidak mudah menguap. Bau zingeron pada jahe tidak kuat namun ekor hidrokarbonnya memberikan rasa pada jahe ketika ini kontak dengan reseptornya. Zingeron digunakan sebagai perasa buatan (www.ch.ic.ac.uk/local/projects/lyerWebsite5/Spice.html). Zingeron ialah suatu pemblok β-adrenoseptor sehingga dapat menghambat oksidasi lipid. Ini menyebabkan zingeron memiliki efek kardioprotektif sehingga dapat digunakan sebagai obat berbagai penyakitt kardiovaskular. Zingeron juga memiliki aktivitas sebagai antioksidan yang berguna bagi kehidupan manusia (www.ch.ic.ac.uk/local/projects/lyerWebsite5/Medicine.html).
Jahe merupakan rimpang dari tanaman bernama ilmiah Zingiber Officinale Roscoe. Tanaman jahe berasal dari Asia Pasifik dan tersebar dari India sampai Cina. Di dunia perdagangan, penanaman jahe berdasarkan daerah asalnya, misalkan jahe Afrika, jahe Chochin atau jahe Jamika. Sejak 250 tahun yang lalu, di Cina Jahe sudah digunakan sebagai bumbu dapur dan obat. Di Malaysia, Filipina, dan Indonesia jahe banyak digunakan sebagai obat tradisional. Sedangkan di Eropa pada abad pertengahan, jahe digunakan sebagai aroma pada bir.
Jahe sering kita temui sehari-hari. Banyak manfaat yang kita dapat dari penggunaan jahe. Diantaranya sebagai bumbu masak, pemberi aroma, dan rasa pada roti, kue, biscuit, kembang gula, serta berbagai minuman (bandrek, sekoteng, dan sirup). Jahe juga dapat digunakan pada obat tradisional sebagai obat sakit kepala, obat batuk, masuk angin,untuk mengobati gangguan pada saluran pencernaan, stimulansia, diuretik, rematik, menghilangkan rasa sakit, obat antimual dan mabuk perjalanan, karminatif (mengeluarkan gas dari perut), kolera, diare, sakit tenggorokan, difteria, neuropati, sebagai penawar racun ular dan sebagai obat luar untuk mengobati gatal digigit serangga, keseleo, bengkak serta memar.
Jahe, begitu akrabnya kita, sehingga tiap daerah di Indonesia mempunyai sebutan sendiri-sendiri bagi jahe. Nama-nama daerah bagi jahe tersebut antara lain halia (Aceh), bahing (Batak karo), sipadeh atau sipodeh (Sumatera Barat), Jahi (Lampung), jae (Jawa), Jahe (sunda), jhei (Madura), pese (Bugis), dan lali (Irian).
Uraian Tumbuhan:
Familia : Zingiberaceae
Nama Latin :
– Zingiber officinale Rosc.
– Z.o. var. amarun (pahit)
– Z.o. var. rubrum (merah)
Nama English : Ginger
Zingiber officinale merupakan tumbuhan herba menahun yang tumbuh liar di ladang-ladang berkadar tanah lembab dan memperoleh banyak sinar matahari dan dapat berumur tahunan. Batangnya tegak tersusun dari helaian daun yang pipih memanjang dengan ujung lancip, berakar serabut dan berumbi dengan rimpang mendatar. Tumbuhan semak berbatang semu ini tingginya bisa mencapai 30 cm – 1 m . Rimpang jehe berkulit agak tebal membungkus daging umbi yang berserat dan berwarna coklat beraroma khas. Bentuk daun bulat panjang dan tidak lebar. Berdaun tunggal, berbentuk lanset dengan panjang antara 15 – 28 mm. Bunganya terdiri dari tandan bunga yang berbentuk kerucut dengan kelopak berwarna putih kekuningan. Bunganya memiliki 2 kelamin dengan 1 benang sari dan 3 putik bunga. Bunga ini muncul pada ketiak daun dengan posisi duduk. Biasanya jahe di tanam pada dataran rendah sampai dataran tinggi (daerah subtropis & tropis) di ketinggian 1500 m di atas permukaan laut. Karena jahe hanya bisa bertahan hidup di daerah tropis, penanamannya hanya bsia dilakukan di daerah katulistiwa seperi Asia Tenggara, Brasil, dan Afrika. Saat ini Equador dan Brasil menjadi pemasok jahe terbesar di dunia.
Varietas Jahe
Terdapat tiga jenis jahe yang populer di pasaran, yaitu:
a. Jahe gajah/jahe badak
Merupakan jahe yang paling disukai di pasaran internasional. Bentuknya besar gemuk dan rasanya tidak terlalu pedas. Daging rimpang berwarna kuning hingga putih.
b. Jahe kuning
Merupakan jahe yang banyak dipakai sebagai bumbu masakan, terutama untuk konsumsi lokal. Rasa dan aromanya cukup tajam. Ukuran rimpang sedang dengan warna kuning.
c. Jahe merah
Jahe jenis ini memiliki kandungan minyak asiri tinggi dan rasa paling pedas, sehingga cocok untuk bahan dasar farmasi dan jamu. Ukuran rimpangnya paling kecil dengan warna merah. Dengan serat lebih besar dibanding jahe biasa.
Menurut Farmakope Belanda, Zingiber Rhizoma (Rhizoma Zingiberis- akar jahe) yang berupa umbi Zingerber officinale mengandung 6% bahan obat-obatan yang sering dipakai sebagai rumusan obat-obatan atau sebagai obat resmi di 23 negara. Menurut daftar prioritas WHO, jahe merupakan tanaman obat-obatan yang paling banyak dipakai di dunia. Di negara Malaysia, Filipina dan Indonesia telah banyak ditemukan manfaat therapeutis.
Berdasarkan beberapa referensi, baik jurnal ilmiah dan majalah popular, disebutkan bahwa jahe dapat mencegah dan mengobati migrain, hepatotoksik, luka bakar, sakit kepala, menurunkan kadar kolesterol, obat rematik, tukak lambung, antidepresi, dan mengobati impotensi. Meski demikian, semua khasiat jahe tersebut masih belum cukup bukti ilmiah, sehingga perlu dilakukan uji secara ilmiah pula.
Kandungan senyawa dalam jahe ada 2 golongan senyawa berdasarkan kemudahan menguap, yaitu golongan senyawa volatil (mudah menguap) dan golongan non-volatil. Senyawa yang menyebabkan pedas di atas merupakan senyawa non-volatil.
Jika kita menumbuk seruas jahe, maka akan timbul aroma khas yang kuat, dan jika kita hirup akan memberi suasana hangat di hidung kita. Aroma khas ini berasal dari minyak atsiri yang terkandung didalamnya. Minyak astiri merupakan senyawa volatil atau mudah menguap, sehingga baunya tercium oleh hidung kita. Minyak ini juga menyebabkan rasa jahe yang khas. Minyak atsiri dalam jahe merupakan gabungan dari senyawa terpenoid yang terdiri dari senyawa-senyawa seskuiterpena, zingiberena, bisabolena, sineol, sitral, zingiberal (ada yang menyebut zingiberol, tapi keduanya adalah senyawa berbeda; zingiberal mengandung gugus aldehid, sedangkan zingiberol mengandung gugus hidroksida,-OH), felandren (phellandrena),borneol, sitronellol, geranial, linalool, limonene, kamfena. Minyak atsiri yang terkandung dalam jahe antara 1 sampai 3 %.
Selain itu, juga ada kandungan senyawa lain, such as: senyawa oleoresin (gingerol, shogaol), senyawa fenol (ada sumber yang menyebut polifenol)(gingeol, zingeron), enzim proteolitik (zingibain) (www.friedli.com), 8,6 % protein, 6,4 % lemak, 5,9% serat, 66,5% karbohidrat, 5,7% abu, kalsium 0,1%, fosfor 0,15 %, besi 0,011%, sodium 0,03%, potassium 1,4%, vitamin A 175 IU/100 g, vitamin B1 0,05 mg/100 g, vitamin B2 0,13 mg/100 g, niasin 1,9% dan vitamin C 12 mg/100g(www.herbal-home-remedies.org). Dalam jahe, ada juga kandungan asam-asam organik seperti asam malat [yang sering disebut sebagai asam apel; COOHCH2CH(OH)COOH ;asam hidroksibutanadioat], dan asam oksalat.
Senyawa Oleoresin dalam jahe digunakan sebagai zat aktif untuk mengobati batuk, penurun panas, dan analgetik. Anda ingat dengan iklan di TV yang menampilkan seseorang yang audisi IDOL, terus dia batuk dan terus makan permen jahe, dan akhirnya bisa menyanyi dengan lancar. Itu mungkin efek dari oleoresin.
Dikutip dari blog bimbelbestteacher bahwa: Ilmuwan cina secara eksperimen mendapatkan bahwa jahe memiliki efek memperkuat perut dimana jahe lembut untuk perut dan menstimulasi usus. Penelitian dengan binatang telah membuktikan bahwa jahe memiliki efek analgesik dan aktivitas antiperadangan. Di India, rimpang jahe digunakan untuk mengobati penyakit kedinginan, mual, asma, batuk, kolik, dipsepsia, rematik dan kehilangan nafsu makan. Penelitian di Jepang menunjukkan bahwa jahe ,memiliki efek tonik pada hati. Jahe dapat menurunkan tekanan darah dengan membatasi aliran darah di daerah periferal tubuh. Penelitian selanjutnya menunjukkkan bahwa jahe dapat menurunkan tingkat kolesterol dengan mengurangi penyerapan kolesterol di darah dan hati (www.ch.ic.ac.uk/local/projects/lyerWebsites/Medicine.html). Banyak bukti yang mendukung bahwa jahe menurunkan penderitaan dan durasi mual yang dirasakan setelah kemoterapi maupun setelah pembedahan. Penelitian pendahuluan menyarankan bahwa jahe aman dan efektif untuk mual dan muntah pada kehamilan jika digunakan dengan dosis yang direkomendasikan dalam waktu kurang dari 5 hari (www.drug and medicine.com). Jahe memproduksi aksi antimual dan antimabuk karena efek antihistamin dan anticholinergic pada peripheral dan pusat. Zat pedas dari jahe melepaskan zat P dari serat sensori. Zat P yang dilepaskan menstimulasi cholinergic dan histaminicneurin untuk melepaskan Ach dan histamin sendiri-sendiri atau memproduksi kontraksi otot langsung dengan mengaktifkan reseptor M dan H1 secara korespondensi. Ini bertujuan agar setelah M tereksitasi oleh zat P, reseptor M dan H1 inaktif untuk sementara dan tidak dapat dieksitasi oleh agonis. Karena itu jahe menghambat aksi anticholinergic dan antihistaminic (Qian, D. S, dan Liu, Z. S, 1992). Rimpang jahe juga digunakan untuk mengobati masuk angin, mengobati kolera, difteria, neuropati dan sebagai penawar racun ular (Heyne, 1987), kecanduan alkohol, sebagai antasida, antifungi, antioksidan, antikejang, antivirus, afrodisiak, mengobati peradangan sendi, atherosclerosis, pegal pada kaki, disentri, kebotakan, masalah sekresi empedu, sebagai penipis darah, mengobati bronkitis, pendarahan, luka bakar pada kulit, kanker, depresi, diare, dismenorrhea (menstruasi yang menyakitkan), flu, gonarthritis, penyakit hati, sebagai stimulan kekebalan tubuh, obat infeksi Helicobacter pylori, impoten, meningkatkan penyerapan obat dan metabolisme, sebagai insektisida, obat parasit usus, penyakit ginjal, antinyamuk, obat psoriasis pada kulit, migrain, malaria, pengurang rasa pegal, obat hipothermia karena serotonin, sakit perut, sakit lambung, infeksi saluran pernafasan, sebagai pasta gigi (www.drug andmedicine.com), obat anti bengkak, rematik dan obat sakit kepala (Heyne, 1987), obat nyeri punggung, mengeluarkan gas dari perut, eksem, panu, terkilir, vitiligo, borok, penyakit cacing gelang dan gatal karena digigit serangga (www.asiamaya.com). Jahe dapat berfungsi sebagai obat nyeri lambung dan radang sendi karena jahe mengandung sejumlah zat gizi seperti vitamin , B1, C, asam-asam amino dan sebagainya. (www.indohafi.com). Minyak atsiri jahe mengandung bisabolena, sineol, phellandrena, sitral,borneol, sitronellol, geranial, linalool, limonene, zingiberol, zingiberena, kamfena (www.friedli.com). Berdasarkan penelitian yang dilakukan oleh Khotimah, 1996 tentang efek analgetika minyak atsiri dan ekstrak etanol rimpang jahe dengan metode Writhin Test pada mencit Mus musculus disimpulkan bahwa minyak atsiri yang terkandung dalam rimpang jahe memilki efek analgetika yang lebih kuat daripada ekstrak etanol rimpang jahe dengan kandungan minyak atsiri yang sama. Jahe memiliki kandungan antioksidan yang tinggi. Aktivitas antioksidan dari jahe disebabkan oleh oleoresin. Ini membuat jahe berfungsi sebagai penangkap radikal bebas. Ini berarti jahe memiliki aktivitas anti radang, antimutagenic (www.friedli.com), dapat melindungi lemak/membran dari oksidasi, menghambat oksidasi kolesterol dan meningkatkan kekebalan tubuh (www.indohafi.com). Selain itu, oleoresin dari jahe yang mengandung gingerol dan shogaol sering terkandung dalam antitusif, antiflatullen dan senyawa antasida (www.drugandmedicine.com). Kombinasi dari menstimulasi sirkulasi darah dan keringat menyebabkan jahe menggerakkan darah ke peripheral. Ini membuat jahe cocok sebagai obat untuk kedinginan, demam dan tekanan darah tinggi (Srivastava, et al, 1964). Jahe menghambat agregasi platelet sehingga dapat mencegah serangan jantung dan stroke (Srivastava, et al, 1964). Pemberian jahe terhadap pasien dengan penyakit arteri koroner menyebabkan pasien tersebut menghasilkan penurunan dalam agregasi platelet (Bordia, A, 1997). Magnesium, kalsium dan fosfor berfungsi bersama-sama dalam pembentukan tulang, kontraksi otot dan transmisi syaraf. Tingginya kandungan mineral ini dalam jahe membuat jahe cocok sebagai obat kejang otot, depresi, hipertensi, lemah otot, kebingungan, perubahan kepribadian, mual, kekurangan koordinasi dan penyakit gastrointestinal. Tingginya kandungan potassium dalam jahe akan melindungi tubuh dari kedinginan, kelumpuhan, sterilitas, kelemahan otot, lesu mental, kebingungan, kerusakan ginjal dan kerusakan hati. Potasium juga mengatur tekanan darah dan detak jantung. Berikut beberapa senyawa yang terkandung dalam jahe: 1. Linalool ( 2,6-dimetil-2,7-oktadien-6-ol ) Linalool ialah terpena alcohol yang terjadi secara alamiah. Ini digunakan sebagai scent pada sabun, detergen, shampoo dan lotion. Ini juga digunakan sebagai intermediet kimia. Produk downstream dari linalool yang umum ialah vitamin E. Berat molekul linalool 154,25 g/mol. Titik leleh < 20 derajat celcius. Titik didih 198-199 derajat celcius. Kelarutan dalam air sebesar 1,589 g/L (www.wikipedia.com). struktur 2. Gingerol ((S)-5-hidroksi-1-(4-hidroksi-3-metoksifenil)-3-dekanon) Gingerol atau [6]-gingerol ialah penyusun aktif dari jahe segar. Gingerol dapat dijumpai sebagai minyak kuning pungent dan padatan kristal dengan titik leleh rendah. Memasak jahe mengubah gingerol menjadi zingeron yang lebih tidak pungent dan memiliki aroma manis. Gingerol dapat mereduksi nausea yang dikarenakan mabuk atau kehamilan dan juga dapat mengurangi migraine. Berat molekul gingerol 294,38 g/mol. Titik leleh 30-32 derajat celcius. (www.wikipedia.com).struktur Gingerol dapat mengalami transformasi dengan panas menjadi shogaol, paradol (dari hidrogenasi shogaol) dan zingeron. (www.chem.uwimona.edu.JM:1104/lectures/ginger.html).
Senyawa Limonen (1-metil-4-prop-1-en-2-il-sikloheksena)
Senyawa dengan berat molekul 136, 24 g/mol, kerapatan 0, 8411 g/cm3, titik leleh -95,20C dan titik didih 1760C ini termasuk dalam golongan terpena. Bau senyawa ini seperti jeruk. R-limonen digunakan sebagai insektisida tanamaan. Sedangkan S-limonen digunakan sebgai pewangi pada produk pembersih. Limonen sangat umum digunakan dalam produk kosmestik.
Kamfena (3,3-dimetil-2-metilen-norkamfana)
Kamfena termasuk golongan monoterpen bisiklik yang menguap pada temperature ruang dan berbau tajam atau pedas. Kamfena dapat menurunkan berat badan, meningkatkan berat hati dan tidak memiliki efek mutagenic (www.wikipedia.com).

Sitral (3,7-dimetil-2,6-oktadienal)
Sitral ialah suatu senyawa terpenoid dimana isomer transnya bernama geranial, sedangkan isomer cis nya bernama neral. Bau lemon geranial lebih kuat daripada neral. Selain digunakan sebagai perasa, sitral juga memiliki aktivitas antimikroba yang kuat, digunakan untuk sintesis vitamin A dan efek feromon pada serangga (www.wikipedia.com).

Senyawa Shogaol
Shogaol bertanggungjawab terhadap khasiat jahe yang dapat meningkatkan suhu tubuh. Shogaol meningkatkan konsentrasi kalsium intraselluler. [10]-shogaol ialah komponen yang tidak pedas pada jahe namun meningkatkan sekresi adrenalin dengan mengaktivasi TRPV1 (transient receptor potential vanilloid subtype 1) (Iwasaki, et al, 2006). Sedangkan, [6] shogaol mengurangi peradangan di lutut dan melindungi tulang rawan pada tulang paha dari kerusakan (Levy, et al, 2006).

Struktur Shogaol
Zingiberena
Zingiberena ialah seskuiterpen monosiklik yang menyusun secara dominant minyak jahe (www.wikipedia.com). 10. Phellandrena Phellandrena ialah nama untuk sepasang senyawa organic yang memiliki struktur molekul yang mirip dan sifat kimia yang mirip, yaitu α-phellandrena dan β-phellandrena. Phellandrena digunakan sebagai pemberi aroma (www.wikipedia.com).

Borneol
Borneol ialah sebuah terpena dan senyawa organic bisiklik. Borneol mudah teroksidasi menjadi keton menghasilkan kamfor. Borneol digunakan dalam pengobatan tradisional cina sebagai Moxa (www.wikipedia.com).

Adapun Khasiat Jahe antara lain :
1. Kandungan phenol yang bersifat anti-radang dan sudah terbukti dalam berapa penelitian dapat meredakan radang sendi dan ketegangan otot. Dalam sistem pengobatan China, jahe juga digunakan untuk mengatasi kram akibat menstruasi.
2. Jahe terbukti berkhasiat sebagai karminativum atau dapat merangsang keluarnya gas dari perut sehingga mampu mengobati masuk angin.
3. Sifatnya yang menghangatkan tubuh juga dipercaya mengurangi rasa mual, batuk dan gejala flu ringan.
4. Penelitian lain menyebutkan, kandungan enzim protease dan lipase yang terkandung dalam jahe berfungsi memecah protein dan lemak. Enzim inilah yang membantu mencerna dan menyerap makanan sehingga meningkatkan napsu makan.
5. Jahe juga melindungi sistem pencernaan dengan menurunkan keasaman lambung. Senyawa aseton (sebenarnya saya ragu dengan aseton, karena tidak bereaksi dengan asam) dan methanol pada jahe juga mampu menghambat terjadinya iritasi pada saluran pencernaan. Karena aseton dan metanol dapat bereaksi dengan asam lambung (HCl; asam klorida). Reaksi antara metanol dengan asam klorida merupakan reaksi substitusi gugus OH dengan gugus Cl]
Manfaatnya, nyeri lambung bisa dikurangi dengan mengkonsumsi jahe. Peradangan pada arthritis/radang sendi juga bisa ditanggulangi dengan banyak mengkonsumsi jahe karena jahe menghambat produksi prostaglandin, hormon dalam tubuh yang dapat memicu peradangan.
6. Merangsang pelepasan hormon adrenalin yang dapat memperlebar pembuluh darah sehingga tubuh menjadi hangat, darah mengalir lebih lancar dan tekanan darah menurun.
7. Jahe Juga mengandung senyawa cineole dan arginine yang mampu mengatasi ejakulasi dini. Senyawa ini juga merangsang ereksi, mencegah kemandulan dan memperkuat daya tahan sperma. Tak salah jika orang pun menjulukinya sebagai aphrodisiac food atau makanan pendongkrak gairah seksual, istimewa bukan?
8. Pengobatan kanker indung telur, Jahe merupakan salah satu senjata yang efektif dalam pengobatan kanker indung telur.
9. Mencegah kanker kolon, Karena jahe juga bisa memperlambat pertumbuhan sel-sel kanker kolorektal.
10. Penyembuhan mual akibat hamil, Hasil review dari beberapa studi menunjukkan, jahe juga sama efektifnya dengan vitamin B6 dalam mengatasi mual yang dipicu oleh kehamilan.
11. Meredakan migraine, Penelitian menemukan, jahe bisa meredakan rasa sakit migrain dengan cara menghentikan kerja prostaglandin, penyebab rasa sakit dan peradangan si pembuluh darah.
12. Mencegah rasa sakit akibat diabetes, Sebuah studi yang dilakukan pada tikus penderita diabetes menemukan, tikus yang diberikan jahe mengalami penurunan kejadian rasa sakit akibat diabetes.
Jahe di pasaran dikemas dalam bentuk kapsul yang mengandung 500 mg serbuk jahe atau dalam bentuk Kristal jahe. Di Asia, jahe diolah dalam bentuk minuman seduh atau kembang gula. Sedangkan di Indonesia jahe dapat ditemukan dalam bentuk minuman seduh dan salah satu komponen jamu. Beberapa hasil pengolahan jahe lain yang terdapat di pasaran, yaitu:
•Jahe segar
•Jahe kering
•Awetan jahe
•Jahe bubuk
•Minyak jahe
•Oleoresin jahe
Sources:

http://web.ist.utl.pt/ist11061/fidel/flaves/sec2/sec222.html

http://www.monografias.com/trabajos16/aceite-de-jenjibre/aceite-de-jenjibre.shtml

http://www.czytelniamedyczna.pl/

http://www.newchemistry.eu/2009/09/26/zingiberen/

http://media.diknas.go.id/media/document/4634.pdf (tentang senyawa karbon)

http://bimbelbestteacher.blogspot.com/2010/01/tentang-jahe.html

http://id.wikipedia.org/wiki/Jahe

http://safril.wordpress.com/2009/10/14/manfaat-jahe-alami/#more-218

http://www.asiamaya.com/jamu/isi/jahe_zingiberofficinale.htm

http://id.shvoong.com/medicine-and-health/

http://sonyaza.blogspot.com/2009/01/kandungan-kimia-rimpang-jahe.html


Masukkan alamat surel Anda untuk berlangganan blog ini dan menerima pemberitahuan tulisan-tulisan baru melalui email.

Bergabunglah dengan 104 pengikut lainnya.

Pos-pos Terakhir

Mohon maaf jika artikel yang di sajikan berasal dari banyak sumber, sumber yang masih utuh saya tampilkan sumber aslinya, tapi seringkali saya lupa, mohon di maafkan. saya coba perbaiki terus kualitas dan kuantitas blog ini.
Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 104 pengikut lainnya.